60.1.214 problem 218

Internal problem ID [10228]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 218
Date solved : Sunday, March 30, 2025 at 03:32:51 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (y-x^{2}\right ) y^{\prime }+4 x y&=0 \end{align*}

Maple. Time used: 0.025 (sec). Leaf size: 57
ode:=(-x^2+y(x))*diff(y(x),x)+4*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {c_1 \sqrt {c_1^{2}-4 x^{2}}}{2}+\frac {c_1^{2}}{2}-x^{2} \\ y &= \frac {c_1 \sqrt {c_1^{2}-4 x^{2}}}{2}+\frac {c_1^{2}}{2}-x^{2} \\ \end{align*}
Mathematica. Time used: 2.531 (sec). Leaf size: 246
ode=(y[x]-x^2)*D[y[x],x]+4*x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x^2 \left (1+\frac {2-2 i}{\frac {i \sqrt {2}}{\sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )-i}}-(1-i)}\right ) \\ y(x)\to x^2 \left (1+\frac {2-2 i}{(-1+i)-\frac {i \sqrt {2}}{\sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )-i}}}\right ) \\ y(x)\to x^2 \left (1+\frac {2-2 i}{(-1+i)-\frac {\sqrt {2}}{\sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )+i}}}\right ) \\ y(x)\to x^2 \left (1+\frac {2-2 i}{\frac {\sqrt {2}}{\sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )+i}}-(1-i)}\right ) \\ y(x)\to 0 \\ y(x)\to -x^2 \\ \end{align*}
Sympy. Time used: 0.946 (sec). Leaf size: 48
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x*y(x) + (-x**2 + y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = 2 C_{1}^{2} - 2 C_{1} \sqrt {\left (C_{1} - x\right ) \left (C_{1} + x\right )} - x^{2}, \ y{\left (x \right )} = 2 C_{1}^{2} + 2 C_{1} \sqrt {\left (C_{1} - x\right ) \left (C_{1} + x\right )} - x^{2}\right ] \]