60.1.206 problem 210

Internal problem ID [10220]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 210
Date solved : Sunday, March 30, 2025 at 03:32:14 PM
CAS classification : [_separable]

\begin{align*} y y^{\prime }+x y^{2}-4 x&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 33
ode:=y(x)*diff(y(x),x)+x*y(x)^2-4*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {{\mathrm e}^{-x^{2}} c_1 +4} \\ y &= -\sqrt {{\mathrm e}^{-x^{2}} c_1 +4} \\ \end{align*}
Mathematica. Time used: 1.927 (sec). Leaf size: 57
ode=y[x]*D[y[x],x]+x*y[x]^2-4*x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {4+e^{-x^2+2 c_1}} \\ y(x)\to \sqrt {4+e^{-x^2+2 c_1}} \\ y(x)\to -2 \\ y(x)\to 2 \\ \end{align*}
Sympy. Time used: 0.581 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)**2 - 4*x + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} e^{- x^{2}} + 4}, \ y{\left (x \right )} = \sqrt {C_{1} e^{- x^{2}} + 4}\right ] \]