Internal
problem
ID
[10205]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
194
Date
solved
:
Sunday, March 30, 2025 at 03:30:33 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x)*ln(x)-y(x)^2*ln(x)-(2*ln(x)^2+1)*y(x)-ln(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]*Log[x] - y[x]^2*Log[x] - (2*Log[x]^2+1)*y[x] - Log[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*log(x)*Derivative(y(x), x) - (2*log(x)**2 + 1)*y(x) - y(x)**2*log(x) - log(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - ((y(x)**2 + 2*y(x)*log(x) + log(x)**2)*log(x) + y(x))/(x*log(x)) cannot be solved by the factorable group method