60.1.177 problem 180

Internal problem ID [10191]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 180
Date solved : Sunday, March 30, 2025 at 03:28:17 PM
CAS classification : [[_homogeneous, `class D`], _rational, _Riccati]

\begin{align*} \left (a \,x^{2}+b x +c \right ) \left (x y^{\prime }-y\right )-y^{2}+x^{2}&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 58
ode:=(a*x^2+b*x+c)*(-y(x)+x*diff(y(x),x))-y(x)^2+x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\tanh \left (\frac {c_1 \sqrt {4 c a -b^{2}}+2 \arctan \left (\frac {2 a x +b}{\sqrt {4 c a -b^{2}}}\right )}{\sqrt {4 c a -b^{2}}}\right ) x \]
Mathematica. Time used: 0.247 (sec). Leaf size: 53
ode=(a*x^2+b*x+c)*(x*D[y[x],x]-y[x]) - y[x]^2 + x^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {1}{(K[1]-1) (K[1]+1)}dK[1]=\int _1^x\frac {1}{a K[2]^2+b K[2]+c}dK[2]+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(x**2 + (x*Derivative(y(x), x) - y(x))*(a*x**2 + b*x + c) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out