60.1.156 problem 159

Internal problem ID [10170]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 159
Date solved : Sunday, March 30, 2025 at 03:21:24 PM
CAS classification : [_separable]

\begin{align*} \left (x^{2}-1\right ) y^{\prime }-2 x y \ln \left (y\right )&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 13
ode:=(x^2-1)*diff(y(x),x)-2*x*y(x)*ln(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{c_1 \left (x +1\right ) \left (x -1\right )} \]
Mathematica. Time used: 0.244 (sec). Leaf size: 22
ode=(x^2-1)*D[y[x],x] - 2*x*y[x]*Log[y[x]]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to e^{e^{c_1} \left (x^2-1\right )} \\ y(x)\to 1 \\ \end{align*}
Sympy. Time used: 0.501 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x)*log(y(x)) + (x**2 - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{C_{1} \left (x^{2} - 1\right )} \]