60.1.134 problem 137

Internal problem ID [10148]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 137
Date solved : Sunday, March 30, 2025 at 03:20:02 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x^{2} y^{\prime }-y^{2}-x y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=x^2*diff(y(x),x)-y(x)^2-x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x}{-\ln \left (x \right )+c_1} \]
Mathematica. Time used: 0.142 (sec). Leaf size: 21
ode=x^2*D[y[x],x] - y[x]^2 - x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x}{-\log (x)+c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.195 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - x*y(x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{C_{1} - \log {\left (x \right )}} \]