60.1.133 problem 136

Internal problem ID [10147]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 136
Date solved : Sunday, March 30, 2025 at 03:20:00 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Riccati]

\begin{align*} x^{2} y^{\prime }+y^{2}+x y+x^{2}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 18
ode:=x^2*diff(y(x),x)+y(x)^2+x*y(x)+x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x \left (\ln \left (x \right )+c_1 -1\right )}{\ln \left (x \right )+c_1} \]
Mathematica. Time used: 0.149 (sec). Leaf size: 31
ode=x^2*D[y[x],x] + y[x]^2 + x*y[x] + x^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x (\log (x)-1-c_1)}{-\log (x)+c_1} \\ y(x)\to -x \\ \end{align*}
Sympy. Time used: 0.236 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) + x**2 + x*y(x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (8 x^{2} - 1\right ) \]