60.1.46 problem 46

Internal problem ID [10060]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 46
Date solved : Sunday, March 30, 2025 at 02:58:29 PM
CAS classification : [_Abel]

\begin{align*} y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 1394
ode:=diff(y(x),x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 12.729 (sec). Leaf size: 231
ode=D[y[x],x] - x^a*y[x]^3 + 3*y[x]^2 - x^(-a)*y[x] -x^(-2*a) + a*x^(-a-1)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x^{-a}-\frac {e^{\frac {2 x^{1-a}}{a-1}}}{\sqrt {-\frac {2^{\frac {3 a+1}{a-1}} x^{a+1} \left (\frac {x^{1-a}}{1-a}\right )^{\frac {a+1}{a-1}} \Gamma \left (\frac {a+1}{1-a},-\frac {4 x^{1-a}}{a-1}\right )}{a-1}+c_1}} \\ y(x)\to x^{-a}+\frac {e^{\frac {2 x^{1-a}}{a-1}}}{\sqrt {-\frac {2^{\frac {3 a+1}{a-1}} x^{a+1} \left (\frac {x^{1-a}}{1-a}\right )^{\frac {a+1}{a-1}} \Gamma \left (\frac {a+1}{1-a},-\frac {4 x^{1-a}}{a-1}\right )}{a-1}+c_1}} \\ y(x)\to x^{-a} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*x**(-a - 1) - x**a*y(x)**3 + 3*y(x)**2 + Derivative(y(x), x) - y(x)/x**a - 1/x**(2*a),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE a*x**(-a - 1) - x**a*y(x)**3 + 3*y(x)**2 + Derivative(y(x), x) - y(x)/x**a - 1/x**(2*a) cannot be solved by the lie group method