60.1.42 problem 42

Internal problem ID [10056]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 42
Date solved : Sunday, March 30, 2025 at 02:58:17 PM
CAS classification : [_Abel]

\begin{align*} y^{\prime }-x \left (x +2\right ) y^{3}-\left (x +3\right ) y^{2}&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 53
ode:=diff(y(x),x)-x*(x+2)*y(x)^3-(x+3)*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\frac {\sqrt {2+\left (x^{2}+2 x \right ) y}}{2}+\left (\operatorname {arctanh}\left (\frac {\sqrt {y}\, x}{\sqrt {2+\left (x^{2}+2 x \right ) y}}\right )+c_1 \right ) \sqrt {y}}{\sqrt {y}} = 0 \]
Mathematica. Time used: 0.71 (sec). Leaf size: 485
ode=D[y[x],x] - x*(x+2)*y[x]^3 - (x+3)*y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [c_1=-\frac {\frac {i \sqrt {\frac {2}{\pi }} \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}} \left (\frac {\sinh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}-\cosh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}-\frac {i \sqrt {\frac {2}{\pi }} \left (\frac {x+1}{2}+\frac {1}{2}\right ) \sinh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}}{\frac {i \sqrt {\frac {2}{\pi }} \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}} \left (i \sinh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )-\frac {i \cosh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}-\frac {\sqrt {\frac {2}{\pi }} \left (\frac {x+1}{2}+\frac {1}{2}\right ) \cosh \left (\sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}\right )}{\sqrt {-i \sqrt {\frac {1}{2 y(x)}+\frac {1}{4} (x+1)^2-\frac {1}{4}}}}},y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(x + 2)*y(x)**3 - (x + 3)*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out