Internal
problem
ID
[9992]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
844
Date
solved
:
Sunday, March 30, 2025 at 02:51:07 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x) = 2/x^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]==((4*(3/2)^2-1)/(4*x^2))*y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - 2*y(x)/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)