59.1.756 problem 778

Internal problem ID [9928]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 778
Date solved : Sunday, March 30, 2025 at 02:49:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y&=0 \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 21
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(36*x^2-1/4)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sin \left (6 x \right )+c_2 \cos \left (6 x \right )}{\sqrt {x}} \]
Mathematica. Time used: 0.041 (sec). Leaf size: 39
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(36*x^2-1/4)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {e^{-6 i x} \left (12 c_1-i c_2 e^{12 i x}\right )}{12 \sqrt {x}} \]
Sympy. Time used: 0.247 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (36*x**2 - 1/4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\frac {1}{2}}\left (6 x\right ) + C_{2} Y_{\frac {1}{2}}\left (6 x\right ) \]