59.1.637 problem 654

Internal problem ID [9809]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 654
Date solved : Sunday, March 30, 2025 at 02:47:06 PM
CAS classification : [_Lienard]

\begin{align*} z y^{\prime \prime }-2 y^{\prime }+z y&=0 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 23
ode:=z*diff(diff(y(z),z),z)-2*diff(y(z),z)+z*y(z) = 0; 
dsolve(ode,y(z), singsol=all);
 
\[ y = \left (c_1 z +c_2 \right ) \cos \left (z \right )+\sin \left (z \right ) \left (c_2 z -c_1 \right ) \]
Mathematica. Time used: 0.05 (sec). Leaf size: 39
ode=z*D[y[z],{z,2}]-2*D[y[z],z]+z*y[z]==0; 
ic={}; 
DSolve[{ode,ic},y[z],z,IncludeSingularSolutions->True]
 
\[ y(z)\to -\sqrt {\frac {2}{\pi }} ((c_1 z+c_2) \cos (z)+(c_2 z-c_1) \sin (z)) \]
Sympy. Time used: 0.201 (sec). Leaf size: 20
from sympy import * 
z = symbols("z") 
y = Function("y") 
ode = Eq(z*y(z) + z*Derivative(y(z), (z, 2)) - 2*Derivative(y(z), z),0) 
ics = {} 
dsolve(ode,func=y(z),ics=ics)
 
\[ y{\left (z \right )} = z^{\frac {3}{2}} \left (C_{1} J_{\frac {3}{2}}\left (z\right ) + C_{2} Y_{\frac {3}{2}}\left (z\right )\right ) \]