59.1.578 problem 594

Internal problem ID [9750]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 594
Date solved : Sunday, March 30, 2025 at 02:45:49 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 19
ode:=x^2*(-x^2+2)*diff(diff(y(x),x),x)-x*(3*x^2+2)*diff(y(x),x)+(-x^2+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x \left (c_1 +c_2 \ln \left (x \right )\right )}{x^{2}-2} \]
Mathematica. Time used: 0.265 (sec). Leaf size: 51
ode=x^2*(2-x^2)*D[y[x],{x,2}]-x*(2+3*x^2)*D[y[x],x]+(2-x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sqrt {x} (c_2 \log (x)+c_1) \exp \left (-\frac {1}{2} \int _1^x\left (\frac {4 K[1]}{K[1]^2-2}-\frac {1}{K[1]}\right )dK[1]\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(2 - x**2)*Derivative(y(x), (x, 2)) - x*(3*x**2 + 2)*Derivative(y(x), x) + (2 - x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False