Internal
problem
ID
[9623]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
465
Date
solved
:
Sunday, March 30, 2025 at 02:38:51 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(1+x)^2*diff(diff(y(x),x),x)-2*(1+x)*diff(y(x),x)-(x^2+2*x-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+1)^2*D[y[x],{x,2}]-2*(x+1)*x*D[y[x],x]-(x^2+2*x-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 1)**2*Derivative(y(x), (x, 2)) - (2*x + 2)*Derivative(y(x), x) - (x**2 + 2*x - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)