Internal
problem
ID
[9434]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
265
Date
solved
:
Sunday, March 30, 2025 at 02:34:52 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(1-4*x)*diff(diff(y(x),x),x)-1/2*x*diff(y(x),x)-3/4*x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(1-4*x)*D[y[x],{x,2}]+((1-(3/2))*x-(6-4*(3/2))*x^2)*D[y[x],x]+(3/2)*(1-(3/2))*x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(1 - 4*x)*Derivative(y(x), (x, 2)) - 3*x*y(x)/4 - x*Derivative(y(x), x)/2,0) ics = {} dsolve(ode,func=y(x),ics=ics)