Internal
problem
ID
[9430]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
261
Date
solved
:
Sunday, March 30, 2025 at 02:34:47 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+(2*x^2+x)*diff(y(x),x)-4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+(x+2*x^2)*D[y[x],x]-4*y[x]==2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (2*x**2 + x)*Derivative(y(x), x) - 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)