Internal
problem
ID
[9386]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
217
Date
solved
:
Sunday, March 30, 2025 at 02:33:45 PM
CAS
classification
:
[_Gegenbauer]
ode:=(-z^2+1)*diff(diff(y(z),z),z)-3*z*diff(y(z),z)+lambda*y(z) = 0; dsolve(ode,y(z), singsol=all);
ode=(1-z^2)*D[y[z],{z,2}]-3*z*D[y[z],z]+\[Lambda]*y[z]==0; ic={}; DSolve[{ode,ic},y[z],z,IncludeSingularSolutions->True]
from sympy import * z = symbols("z") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*y(z) - 3*z*Derivative(y(z), z) + (1 - z**2)*Derivative(y(z), (z, 2)),0) ics = {} dsolve(ode,func=y(z),ics=ics)
False