59.1.138 problem 140

Internal problem ID [9310]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 140
Date solved : Sunday, March 30, 2025 at 02:32:04 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 72
ode:=x^2*(1-x)*diff(diff(y(x),x),x)+x*(7+x)*diff(y(x),x)+(9-x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 c_2 \left (x^{4}+16 x^{3}+36 x^{2}+16 x +1\right ) \ln \left (x \right )+c_1 \,x^{4}+\left (16 c_1 +120 c_2 \right ) x^{3}+\left (36 c_1 +450 c_2 \right ) x^{2}+\left (16 c_1 +280 c_2 \right ) x +c_1 +25 c_2}{x^{3}} \]
Mathematica. Time used: 0.751 (sec). Leaf size: 145
ode=x^2*(1-x)*D[y[x],{x,2}]+x*(7+x)*D[y[x],x]+(9-x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (x^4+16 x^3+36 x^2+16 x+1\right ) \exp \left (\int _1^x\left (\frac {1}{2 K[1]}-\frac {4}{K[1]-1}\right )dK[1]-\frac {1}{2} \int _1^x\frac {K[2]+7}{K[2]-K[2]^2}dK[2]\right ) \left (c_2 \int _1^x\frac {\exp \left (-2 \int _1^{K[3]}\left (\frac {1}{2 K[1]}-\frac {4}{K[1]-1}\right )dK[1]\right )}{\left (K[3]^4+16 K[3]^3+36 K[3]^2+16 K[3]+1\right )^2}dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(1 - x)*Derivative(y(x), (x, 2)) + x*(x + 7)*Derivative(y(x), x) + (9 - x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False