59.1.47 problem 49

Internal problem ID [9219]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 49
Date solved : Sunday, March 30, 2025 at 02:25:50 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (1+2 x \right ) y^{\prime }-\left (4+6 x \right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 46
ode:=x^2*(1+x)*diff(diff(y(x),x),x)+x*(2*x+1)*diff(y(x),x)-(4+6*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,x^{2}+\frac {c_2 \left (12 \ln \left (x \right ) x^{4}-12 \ln \left (1+x \right ) x^{4}+12 x^{3}-6 x^{2}+4 x -3\right )}{x^{2}} \]
Mathematica. Time used: 0.253 (sec). Leaf size: 103
ode=x^2*(1+x)*D[y[x],{x,2}]+x*(1+2*x)*D[y[x],x]-(4+6*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {6 K[1]+5}{2 K[1]^2+2 K[1]}dK[1]-\frac {1}{2} \int _1^x\left (\frac {1}{K[2]+1}+\frac {1}{K[2]}\right )dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {6 K[1]+5}{2 K[1]^2+2 K[1]}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(x + 1)*Derivative(y(x), (x, 2)) + x*(2*x + 1)*Derivative(y(x), x) - (6*x + 4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False