
A Solution Manual For

A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 1, First order differential equations. Section 1.1 First order equations. Exercises page 10	3
2	Chapter 1, First order differential equations. Section 1.1.3 Geometric. Exercises page 15	13
3	Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises page 19	16
4	Chapter 1, First order differential equations. Section 1.3.1 Separable equations. Exercises page 26	25
5	Chapter 1, First order differential equations. Section 1.4.1. Integrating factors. Exercises page 41	58
6	Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises page 90	104
7	Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Exercises page 94	113
8	Chapter 2, Second order linear equations. Section 2.2.4. Applications. Exercises page 99	120
9	Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110	123
10	Chapter 2, Second order linear equations. Section 2.3.2 Resonance Exercises page 114	147
11	Chapter 2, Second order linear equations. Section 2.4.1 Cauchy- Euler equations. Exercises page 120	151
12	Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters. Exercises page 124	161
13	Chapter 2, Second order linear equations. Section 2.4.3 Reduction of order. Exercises page 125	171

14	Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130	177
15	Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156	187
16	Chapter 3, Laplace transform. Section 3.3 The convolution property. Exercises page 162	202
17	Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173	205
18	Chapter 4, Linear Systems. Exercises page 190	213
19	Chapter 4, Linear Systems. Exercises page 202	22 4
20	Chapter 4, Linear Systems. Exercises page 218	23 4
21	Chapter 4, Linear Systems. Exercises page 225	24 1
22	Chapter 4, Linear Systems. Exercises page 237	24 4
23	Chapter 4. Linear Systems, Exercises page 244	256

1 Chapter 1, First order differential equations. Section 1.1 First order equations. Exercises page 10

1.1	problem 1(a)						•									•			4
1.2	problem 1(b)																		5
1.3	problem 3																		6
1.4	problem 4																		7
1.5	problem 5																		8
1.6	problem 6																		9
1.7	problem 7																		10
1.8	problem 8																		11
1 9	problem 9																		12

1.1 problem 1(a)

Internal problem ID [11359]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 1(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - \frac{2x}{t} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(diff(x(t),t)=2*x(t)/t,x(t), singsol=all)

$$x(t) = c_1 t^2$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 16

DSolve[x'[t]==2*x[t]/t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow c_1 t^2$$

$$x(t) \to 0$$

1.2 problem 1(b)

Internal problem ID [11360]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 1(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + \frac{t}{x} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(x(t),t)=-t/x(t),x(t), singsol=all)

$$x(t) = \sqrt{-t^2 + c_1}$$

$$x(t) = -\sqrt{-t^2 + c_1}$$

✓ Solution by Mathematica

Time used: 0.139 (sec). Leaf size: 39

 $\label{eq:DSolve} DSolve[x'[t] == -t/x[t], x[t], t, IncludeSingularSolutions \ \ -> \ True]$

$$x(t) \rightarrow -\sqrt{-t^2+2c_1}$$

$$x(t) \rightarrow \sqrt{-t^2 + 2c_1}$$

1.3 problem 3

Internal problem ID [11361]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 3.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' + x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

 $dsolve(diff(x(t),t)=-x(t)^2,x(t), singsol=all)$

$$x(t) = \frac{1}{t + c_1}$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 39

DSolve[x'[t]==-t/x[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\sqrt{-t^2 + 2c_1}$$

$$x(t) \to \sqrt{-t^2 + 2c_1}$$

6

1.4 problem 4

Internal problem ID [11362]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 2x' + 2x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(x(t),t\$2)+2*diff(x(t),t)+2*x(t)=0,x(t), singsol=all)

$$x(t) = c_1 e^{-t} \sin(t) + c_2 e^{-t} \cos(t)$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 22

DSolve[x''[t]+2*x'[t]+2*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow e^{-t}(c_2 \cos(t) + c_1 \sin(t))$$

1.5 problem 5

Internal problem ID [11363]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - e^{-x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 8

dsolve(diff(x(t),t)=exp(-x(t)),x(t), singsol=all)

$$x(t) = \ln\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.394 (sec). Leaf size: 10

DSolve[x'[t]==Exp[-x[t]],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \log(t + c_1)$$

1.6 problem 6

Internal problem ID [11364]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + 2x = t^2 + 4t + 7$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

 $dsolve(diff(x(t),t)+2*x(t)=t^2+4*t+7,x(t), singsol=all)$

$$x(t) = \frac{t^2}{2} + \frac{3t}{2} + \frac{11}{4} + e^{-2t}c_1$$

✓ Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 28

DSolve[x'[t]+2*x[t]==t^2+4*t+7,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{4} (2t^2 + 6t + 11) + c_1 e^{-2t}$$

1.7 problem 7

Internal problem ID [11365]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$2x't - x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve(2*t*diff(x(t),t)=x(t),x(t), singsol=all)

$$x(t) = c_1 \sqrt{t}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 18

DSolve[2*t*x'[t]==x[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 \sqrt{t}$$

$$x(t) \to 0$$

1.8 problem 8

Internal problem ID [11366]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$\boxed{t^2x'' - 6x = 0}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

 $dsolve(t^2*diff(x(t),t^2)-6*x(t)=0,x(t), singsol=all)$

$$x(t) = c_1 t^3 + \frac{c_2}{t^2}$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 18

DSolve[t^2*x''[t]-6*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{c_2 t^5 + c_1}{t^2}$$

1.9 problem 9

Internal problem ID [11367]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1 First order equations.

Exercises page 10

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2x'' - 5x' - 3x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(2*diff(x(t),t\$2)-5*diff(x(t),t)-3*x(t)=0,x(t), singsol=all)

$$x(t) = c_1 e^{3t} + c_2 e^{-\frac{t}{2}}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 24

DSolve[2*x''[t]-5*x'[t]-3*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{-t/2} + c_2 e^{3t}$$

2	Chapter 1, First order differential equations. Section 1.1.3 Geometric. Exercises page 15	
	problem 1	
2.2	problem 2	

2.1 problem 1

Internal problem ID [11368]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1.3 Geometric. Exercises page 15

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x\left(1 - \frac{x}{4}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve(diff(x(t),t)=x(t)*(1-x(t)/4),x(t), singsol=all)

$$x(t) = \frac{4}{1 + 4e^{-t}c_1}$$

✓ Solution by Mathematica

Time used: 0.439 (sec). Leaf size: 32

DSolve[x'[t]==x[t]*(1-x[t]/4),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{4e^t}{e^t + e^{4c_1}}$$

$$x(t) \to 0$$

$$x(t) \rightarrow 4$$

2.2 problem 2

Internal problem ID [11369]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.1.3 Geometric. Exercises page 15

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$x' - x^2 = t^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 45

 $dsolve(diff(x(t),t)=x(t)^2+t^2,x(t), singsol=all)$

$$x(t) = \frac{\left(-\operatorname{BesselJ}\left(-\frac{3}{4}, \frac{t^2}{2}\right)c_1 - \operatorname{BesselY}\left(-\frac{3}{4}, \frac{t^2}{2}\right)\right)t}{c_1\operatorname{BesselJ}\left(\frac{1}{4}, \frac{t^2}{2}\right) + \operatorname{BesselY}\left(\frac{1}{4}, \frac{t^2}{2}\right)}$$

✓ Solution by Mathematica

Time used: 0.203 (sec). Leaf size: 169

DSolve[x'[t]==x[t]^2+t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \frac{t^2 \left(-2 \operatorname{BesselJ}\left(-\frac{3}{4}, \frac{t^2}{2}\right) + c_1 \left(\operatorname{BesselJ}\left(\frac{3}{4}, \frac{t^2}{2}\right) - \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{t^2}{2}\right)\right)\right) - c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{t^2}{2}\right)}{2t \left(\operatorname{BesselJ}\left(\frac{1}{4}, \frac{t^2}{2}\right) + c_1 \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{t^2}{2}\right)\right)}$$

$$x(t) \rightarrow -\frac{t^2 \operatorname{BesselJ}\left(-\frac{5}{4}, \frac{t^2}{2}\right) - t^2 \operatorname{BesselJ}\left(\frac{3}{4}, \frac{t^2}{2}\right) + \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{t^2}{2}\right)}{2t \operatorname{BesselJ}\left(-\frac{1}{4}, \frac{t^2}{2}\right)}$$

3	Chapter 1, First order differential equations.														
	Section 1.2 Antiderivatives. Exercises page 19														
3.1	problem 1	17													
3.2	problem 2	18													
3.3	problem 3	19													
3.4	$ problem \ 4(a) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	20													
3.5	problem 4(b)	21													
3.6	problem 4(c)	22													
3.7	problem 6	23													
3.8	problem 7	24													

3.1 problem 1

Internal problem ID [11370]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises page 19

Problem number: 1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = t \cos\left(t^2\right)$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve([diff(x(t),t)=t*cos(t^2),x(0) = 1],x(t), singsol=all)$

$$x(t) = \frac{\sin(t^2)}{2} + 1$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 15

 $\label{eq:DSolve} DSolve[\{x'[t]==t*Cos[t^2],\{x[0]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{1}{2} \left(\sin \left(t^2 \right) + 2 \right)$$

3.2 problem 2

Internal problem ID [11371]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises

page 19

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = \frac{t+1}{\sqrt{t}}$$

With initial conditions

$$[x(1) = 4]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(x(t),t)=(1+t)/sqrt(t),x(1)=4],x(t), singsol=all)

$$x(t) = \frac{2t^{\frac{3}{2}}}{3} + 2\sqrt{t} + \frac{4}{3}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 23

 $DSolve[\{x'[t]==(1+t)/Sqrt[t],\{x[1]==4\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{2}{3} \Big(t^{3/2} + 3\sqrt{t} + 2 \Big)$$

3.3 problem 3

Internal problem ID [11372]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises page 19

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _quadrature]]

$$x'' = -3\sqrt{t}$$

With initial conditions

$$[x(1) = 4, x'(1) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 14

dsolve([diff(x(t),t\$2)=-3*sqrt(t),x(1) = 4, D(x)(1) = 2],x(t), singsol=all)

$$x(t) = -\frac{4t^{\frac{5}{2}}}{5} + 4t + \frac{4}{5}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 19

 $DSolve[\{x''[t]==-3*Sqrt[t],\{x[1]==4,x'[1]==2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to -\frac{4}{5} (t^{5/2} - 5t - 1)$$

3.4 problem 4(a)

Internal problem ID [11373]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises page 19

Problem number: 4(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = t e^{-2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t)=t*exp(-2*t),x(t), singsol=all)

$$x(t) = -\frac{(2t+1)e^{-2t}}{4} + c_1$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 22

DSolve[x'[t]==t*Exp[-2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{1}{4}e^{-2t}(2t+1) + c_1$$

3.5 problem 4(b)

Internal problem ID [11374]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises page 19

Problem number: 4(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = \frac{1}{t \ln(t)}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

dsolve(diff(x(t),t)=1/(t*ln(t)),x(t), singsol=all)

$$x(t) = \ln\left(\ln\left(t\right)\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 11

DSolve[x'[t]==1/(t*Log[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \log(\log(t)) + c_1$$

3.6 problem 4(c)

Internal problem ID [11375]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}$: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises

page 19

Problem number: 4(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x'\sqrt{t} = \cos\left(\sqrt{t}\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(sqrt(t)*diff(x(t),t)=cos(sqrt(t)),x(t), singsol=all)

$$x(t) = 2\sin\left(\sqrt{t}\right) + c_1$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 16

DSolve[Sqrt[t]*x'[t]==Cos[Sqrt[t]],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 2\sin\left(\sqrt{t}\right) + c_1$$

3.7 problem 6

Internal problem ID [11376]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises page 19

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' = \frac{e^{-t}}{\sqrt{t}}$$

With initial conditions

$$[x(1) = 0]$$

Solution by Maple

Time used: 0.032 (sec). Leaf size: 20

dsolve([diff(x(t),t)=exp(-t)/sqrt(t),x(1) = 0],x(t), singsol=all)

$$x(t) = -\left(\operatorname{erf}\left(1\right) - \operatorname{erf}\left(\sqrt{t}\right)\right)\sqrt{\pi}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 22

DSolve[{x'[t]==Exp[-t]/Sqrt[t],{x[1]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \sqrt{\pi} \left(\operatorname{erf} \left(\sqrt{t} \right) - \operatorname{erf}(1) \right)$$

3.8 problem 7

Internal problem ID [11377]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.2 Antiderivatives. Exercises page 19

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$tx'' + x' = 1$$

With initial conditions

$$[x(1) = 0, x'(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: $9\,$

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{$\tt x$}(\mbox{$\tt t$}),\mbox{$\tt t$}),\mbox{$\tt t$}) = 1, \\ \mbox{$\tt x$}(\mbox{$\tt 1$}) = 0, \mbox{$\tt D$}(\mbox{$\tt x$})(\mbox{$\tt 1$}) = 2], \\ \mbox{$\tt x$}(\mbox{$\tt t$}), \mbox{$\tt singsol=all$}) \\ \mbox{dsolve}([\mbox{diff}(\mbox{$\tt x$}(\mbox{$\tt t$}),\mbox{$\tt t$}),\mbox{$\tt t$}) = 1, \\ \mbox{$\tt x$}(\mbox{$\tt t$}) = 0, \mbox{$\tt D$}(\mbox{$\tt x$})(\mbox{$\tt t$}) = 2], \\ \mbox{$\tt x$}(\mbox{$\tt t$}), \mbox{$\tt singsol=all$}) \\ \mbox{dsolve}([\mbox{diff}(\mbox{$\tt x$}(\mbox{$\tt t$}),\mbox{$\tt t$}),\mbox{$\tt t$}) = 0, \\ \mbox{dsolve}(\mbox{$\tt x$})(\mbox{$\tt t$}) = 0, \\ \mbox{dsolve}(\mbox{$\tt x$})(\mbox{$\tt t$}) = 0, \\ \mbox{dsolve}(\mbox{$\tt t$}) = 0, \\ \mbox{dsolve}(\mb$

$$x(t) = \ln(t) + t - 1$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 10

 $DSolve[\{D[t*x'[t],t]==1,\{x[1]==0,x'[1]==2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to t + \log(t) - 1$$

4 Chapter 1, First order differential equations. Section 1.3.1 Separable equations. Exercises page 26

4.1	problem	1(a)	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•			•		•		•	•	26
4.2	problem	1(b)																									27
4.3	problem	1(c)		•																							28
4.4	problem	1(d)		•																							29
4.5	problem	1(e)																									30
4.6	problem	1(f).																									31
4.7	problem	1(g)			•																						32
4.8	problem	1(h)		•		•												•				•					33
4.9	problem	4(a)		•		•												•				•					34
4.10	problem	4(b)		•																		•					35
4.11	problem	4(c)			•																						36
4.12	problem	4(d)		•		•												•				•					37
4.13	problem	4(e)		•		•																•					38
4.14	problem	4(f).		•		•																•					39
4.15	problem	5		•																		•					40
	problem																										41
4.17	problem	7																								•	42
	problem																										43
4.19	problem	9																								•	44
	problem																										45
	problem																										46
	problem																										47
4.23	problem	11 .																								•	48
4.24	problem	12 .																									49
4.25	problem	13 .																								•	50
4.26	problem	15 .																									52
4.27	problem	21 .		•		•												•	•			•					53
4.28	problem	23 .		•																		•					54
	problem																										55
4.30	problem	26 .			•														•								56
4.31	problem	28 .																									57

4.1 problem 1(a)

Internal problem ID [11378]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - \sqrt{x} = 0$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 11

dsolve([diff(x(t),t)=sqrt(x(t)),x(0) = 1],x(t), singsol=all)

$$x(t) = \frac{(t+2)^2}{4}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 16

DSolve[{x'[t]==Sqrt[t],{x[0]==1}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) o \frac{2t^{3/2}}{3} + 1$$

4.2 problem 1(b)

Internal problem ID [11379]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - e^{-2x} = 0$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: 13

dsolve([diff(x(t),t)=exp(-2*x(t)),x(0) = 1],x(t), singsol=all)

$$x(t) = \frac{\ln\left(2t + e^2\right)}{2}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 17

 $DSolve[\{x'[t] == Exp[-2*x[t]], \{x[0] == 1\}\}, x[t], t, IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{1}{2} \log \left(2t + e^2\right)$$

4.3 problem 1(c)

Internal problem ID [11380]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y'-y^2=1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 8

 $dsolve(diff(y(t),t)=1+y(t)^2,y(t), singsol=all)$

$$y(t) = \tan\left(t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.216 (sec). Leaf size: 24

DSolve[y'[t]==1+y[t]^2,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \tan(t+c_1)$$

$$y(t) \rightarrow -i$$

$$y(t) \to i$$

4.4 problem 1(d)

Internal problem ID [11381]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(d).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$u' - \frac{1}{5 - 2u} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(u(t),t)=1/(5-2*u(t)),u(t), singsol=all)

$$u(t) = \frac{5}{2} - \frac{\sqrt{25 - 4t - 4c_1}}{2}$$

$$u(t) = \frac{5}{2} + \frac{\sqrt{25 - 4t - 4c_1}}{2}$$

✓ Solution by Mathematica

Time used: 0.142 (sec). Leaf size: 49

DSolve[u'[t]==1/(5-2*u[t]),u[t],t,IncludeSingularSolutions -> True]

$$u(t) \rightarrow \frac{1}{2} \left(5 - \sqrt{-4t + 25 + 4c_1}\right)$$

$$u(t) \rightarrow \frac{1}{2} \big(5 + \sqrt{-4t + 25 + 4c_1}\big)$$

4.5 problem 1(e)

Internal problem ID [11382]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - ax = b$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(x(t),t)=a*x(t)+b,x(t), singsol=all)

$$x(t) = -\frac{b}{a} + e^{at}c_1$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 30

DSolve[x'[t]==a*x[t]+b,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{b}{a} + c_1 e^{at}$$

$$x(t) \to -\frac{b}{a}$$

4.6 problem 1(f)

Internal problem ID [11383]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$Q' - \frac{Q}{4 + Q^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

 $dsolve(diff(Q(t),t)=Q(t)/(4+Q(t)^2),Q(t), singsol=all)$

$$Q(t) = \mathrm{e}^{-\frac{\mathrm{LambertW}\left(\frac{\mathrm{e}^{\frac{t}{2} + \frac{c_1}{2}}}{4}\right)}{2} + \frac{t}{4} + \frac{c_1}{4}}$$

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 42

DSolve[Q'[t]==Q[t]/(4*Q[t]^2),Q[t],t,IncludeSingularSolutions -> True]

$$Q(t) \to -\frac{\sqrt{t+4c_1}}{\sqrt{2}}$$

$$Q(t) \to \frac{\sqrt{t + 4c_1}}{\sqrt{2}}$$

4.7 problem 1(g)

Internal problem ID [11384]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(g).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - e^{x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(x(t),t)=exp(x(t)^2),x(t), singsol=all)$

$$t - \frac{\sqrt{\pi} \operatorname{erf}(x(t))}{2} + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.594 (sec). Leaf size: 17

DSolve[x'[t]==Exp[x[t]^2],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \operatorname{erf}^{-1}\left(\frac{2(t+c_1)}{\sqrt{\pi}}\right)$$

4.8 problem 1(h)

Internal problem ID [11385]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 1(h).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - r(a - y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(y(t),t)=r*(a-y(t)),y(t), singsol=all)

$$y(t) = a + e^{-tr}c_1$$

✓ Solution by Mathematica

Time used: 0.064 (sec). Leaf size: 21

DSolve[y'[t]==r*(a-y[t]),y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to a + c_1 e^{-rt}$$

$$y(t) \to a$$

4.9 problem 4(a)

Internal problem ID [11386]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 4(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - \frac{2x}{t+1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(x(t),t)=2*x(t)/(t+1),x(t), singsol=all)

$$x(t) = c_1(t+1)^2$$

✓ Solution by Mathematica

Time used: 0.041 (sec). Leaf size: 18

DSolve[x'[t]==2*x[t]/(t+1),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1(t+1)^2$$

$$x(t) \to 0$$

4.10 problem 4(b)

Internal problem ID [11387]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 4(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\theta' - t\sqrt{t^2 + 1} \sec(\theta) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(theta(t),t)=t*sqrt(1+t^2)*sec(theta(t)),theta(t), singsol=all)

$$\theta(t) = \arcsin\left(\frac{(t^2+1)^{\frac{3}{2}}}{3} + c_1\right)$$

✓ Solution by Mathematica

Time used: 5.052 (sec). Leaf size: 91

DSolve[theta'[t]==t*Sqrt[1+t^2]*Sec[theta[t]],theta[t],t,IncludeSingularSolutions -> True]

$$\theta(t) \to \arcsin\left(\frac{1}{3}\left(\sqrt{t^2+1}t^2+\sqrt{t^2+1}+3c_1\right)\right)$$

$$\theta(t) \to \arcsin\left(\frac{1}{3}\left(\sqrt{t^2+1}t^2+\sqrt{t^2+1}+3c_1\right)\right)$$

$$\theta(t) \to \arcsin\left(\frac{1}{3}(t^2+1)^{3/2}\right)$$

4.11 problem 4(c)

Internal problem ID [11388]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 4(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(2u+1)u'=t+1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 45

dsolve((2*u(t)+1)*diff(u(t),t)-(1+t)=0,u(t), singsol=all)

$$u(t) = -\frac{1}{2} - \frac{\sqrt{2t^2 + 4c_1 + 4t + 1}}{2}$$

$$u(t) = -\frac{1}{2} + \frac{\sqrt{2t^2 + 4c_1 + 4t + 1}}{2}$$

✓ Solution by Mathematica

Time used: 0.171 (sec). Leaf size: 59

DSolve[(2*u[t]+1)*u'[t]-(1+t)==0,u[t],t,IncludeSingularSolutions -> True]

$$u(t) o rac{1}{2} \Big(-1 - \sqrt{2t^2 + 4t + 1 + 4c_1} \Big)$$

$$u(t) o rac{1}{2} \Big(-1 + \sqrt{2t^2 + 4t + 1 + 4c_1} \Big)$$

4.12 problem 4(d)

Internal problem ID [11389]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 4(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$R' - (t+1)(1+R^2) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(diff(R(t),t)=(t+1)*(1+R(t)^2),R(t), singsol=all)$

$$R(t) = an\left(rac{1}{2}t^2 + t + c_1
ight)$$

✓ Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 31

DSolve[R'[t]==(t+1)*(1+R[t]^2),R[t],t,IncludeSingularSolutions -> True]

$$R(t) o an\left(rac{t^2}{2} + t + c_1
ight)$$

$$R(t) \rightarrow -i$$

$$R(t) \rightarrow i$$

4.13 problem 4(e)

Internal problem ID [11390]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 4(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' + y + \frac{1}{y} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 29

 $\label{eq:diff} dsolve(diff(y(t),t)+y(t)+1/y(t)=0,y(t), singsol=all)$

$$y(t) = \sqrt{\mathrm{e}^{-2t}c_1 - 1}$$

$$y(t) = -\sqrt{e^{-2t}c_1 - 1}$$

✓ Solution by Mathematica

Time used: 4.571 (sec). Leaf size: 57

DSolve[y'[t]+y[t]+1/y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to -\sqrt{-1 + e^{-2t + 2c_1}}$$

$$y(t) \to \sqrt{-1 + e^{-2t + 2c_1}}$$

$$y(t) \rightarrow -i$$

$$y(t) \to i$$

4.14 problem **4(f)**

Internal problem ID [11391]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 4(f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$(t+1) x' + x^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

 $dsolve((1+t)*diff(x(t),t)+x(t)^2=0,x(t), singsol=all)$

$$x(t) = \frac{1}{\ln(t+1) + c_1}$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[(1+t)*x'[t]+x[t]^2==0,y[t],t,IncludeSingularSolutions -> True]

Not solved

4.15 problem 5

Internal problem ID [11392]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$y' - \frac{1}{2y+1} = 0$$

With initial conditions

$$[y(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve([diff(y(t),t)=1/(2*y(t)+1),y(0) = 1],y(t), singsol=all)

$$y(t) = -\frac{1}{2} + \frac{\sqrt{4t+9}}{2}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 20

 $DSolve[\{y'[t]==1/(2*y[t]+1),\{y[0]==1\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) o rac{1}{2} \Big(\sqrt{4t+9} - 1 \Big)$$

4.16 problem 6

Internal problem ID [11393]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$x' - (4t - x)^2 = 0$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 28

 $dsolve([diff(x(t),t)=(4*t-x(t))^2,x(0) = 1],x(t), singsol=all)$

$$x(t) = \frac{(4t-2)e^{4t} + 12t + 6}{3 + e^{4t}}$$

✓ Solution by Mathematica

Time used: 0.271 (sec). Leaf size: $31\,$

 $DSolve[\{x'[t]==(4*t-x[t])^2,\{x[0]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{12t + e^{4t}(4t - 2) + 6}{e^{4t} + 3}$$

4.17 problem 7

Internal problem ID [11394]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 7.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - 2tx^2 = 0$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 13

 $\label{eq:decomposition} dsolve([diff(x(t),t)=2*t*x(t)^2,x(0) = 1],x(t), singsol=all)$

$$x(t) = -\frac{1}{t^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.183 (sec). Leaf size: 14

 $DSolve[\{x'[t]==2*t*x[t]^2,\{x[0]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{1}{1 - t^2}$$

4.18 problem 8

Internal problem ID [11395]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - t^2 e^{-x} = 0$$

With initial conditions

$$[x(0) = \ln(2)]$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 15

 $dsolve([diff(x(t),t)=t^2*exp(-x(t)),x(0) = ln(2)],x(t), singsol=all)$

$$x(t) = -\ln(3) + \ln(t^3 + 6)$$

✓ Solution by Mathematica

Time used: 0.474 (sec). Leaf size: 15

 $DSolve[\{x'[t]==t^2*Exp[-x[t]],\{x[0]==Log[2]\}\},x[t],t,IncludeSingularSolutions] \rightarrow True]$

$$x(t) \to \log\left(\frac{1}{3}(t^3+6)\right)$$

4.19 problem 9

Internal problem ID [11396]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - x(4+x) = 0$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(x(t),t)=x(t)*(4+x(t)),x(0) = 1],x(t), singsol=all)

$$x(t) = \frac{4}{-1 + 5e^{-4t}}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 21

 $DSolve[\{x'[t]==x[t]*(4+x[t]),\{x[0]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to -\frac{4e^{4t}}{e^{4t} - 5}$$

4.20 problem 10(a)

Internal problem ID [11397]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 10(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - e^{t+x} = 0$$

With initial conditions

$$[x(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 13

 $\label{eq:decomposition} dsolve([diff(x(t),t)=exp(t+x(t)),x(0) = 0],x(t), \ singsol=all)$

$$x(t) = -\ln\left(-e^t + 2\right)$$

✓ Solution by Mathematica

Time used: 1.309 (sec). Leaf size: 15

DSolve[{x'[t]==Exp[t+x[t]],{x[0]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\log\left(2 - e^t\right)$$

4.21 problem 10(b)

Internal problem ID [11398]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 10(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$T' - 2at(T^2 - a^2) = 0$$

With initial conditions

$$[T(0) = 0]$$

✓ Solution by Maple

Time used: 0.687 (sec). Leaf size: 31

 $dsolve([diff(T(t),t)=2*a*t*(T(t)^2-a^2),T(0) = 0],T(t), singsol=all)$

$$T(t) = -\frac{a\left(e^{2t^2a^2} - 1\right)}{e^{2t^2a^2} + 1}$$

✓ Solution by Mathematica

Time used: 3.308 (sec). Leaf size: 16

$$T(t) \rightarrow -a \tanh\left(a^2 t^2\right)$$

4.22 problem 10(c)

Internal problem ID [11399]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 10(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - t^2 \tan(y) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 5

 $\label{eq:decomposition} dsolve([diff(y(t),t)=t^2*tan(y(t)),y(0) = 0],y(t), \ singsol=all)$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.002 (sec). Leaf size: 6

 $\label{eq:DSolve} DSolve[\{y'[t]==t^2*Tan[y[t]],\{y[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 0$$

4.23 problem 11

Internal problem ID [11400]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - \frac{(2t+4)x}{\ln(x)} = 0$$

With initial conditions

$$[x(0) = e]$$

Solution by Maple

Time used: 0.093 (sec). Leaf size: 17

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{x}(\mbox{t}),\mbox{t}) = (4 + 2 * \mbox{t}) * \mbox{x}(\mbox{t}) / \mbox{ln}(\mbox{x}(\mbox{t})), \\ \mbox{x}(\mbox{0}) = \exp(\mbox{1})] \mbox{,} \\ \mbox{x}(\mbox{t}), \mbox{singsol=all}) \\ \mbox{dsolve}([\mbox{diff}(\mbox{x}(\mbox{t}),\mbox{t}) = (4 + 2 * \mbox{t}) * \mbox{x}(\mbox{t}) / \mbox{ln}(\mbox{x}(\mbox{t})), \\ \mbox{x}(\mbox{0}) = \exp(\mbox{1})] \mbox{,} \\ \mbox{x}(\mbox{t}), \mbox{singsol=all}) \\ \mbox{dsolve}([\mbox{diff}(\mbox{x}(\mbox{t}),\mbox{t}) = (4 + 2 * \mbox{t}) * \mbox{x}(\mbox{t}) / \mbox{ln}(\mbox{x}(\mbox{t})), \\ \mbox{x}(\mbox{0}) = (4 + 2 * \mbox{t}) * \mbox{x}(\mbox{t}) / \mbox{ln}(\mbox{x}(\mbox{t})), \\ \mbox{x}(\mbox{0}) = (4 + 2 * \mbox{t}) * \mbox{x}(\mbox{t}) / \mbox{ln}(\mbox{x}(\mbox{t})), \\ \mbox{x}(\mbox{0}) = (4 + 2 * \mbox{t}) * \mbox{x}(\mbox{t}) / \mbox{n}(\mbox{t}) + (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}), \\ \mbox{x}(\mbox{t}) = (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}) + (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}), \\ \mbox{x}(\mbox{t}) = (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}), \\ \mbox{x}(\mbox{t}) = (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}), \\ \mbox{x}(\mbox{t}) = (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}), \\ \mbox{x}(\mbox{t}) = (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n}(\mbox{t}), \\ \mbox{x}(\mbox{t}) = (4 + 2 * \mbox{t}) / \mbox{n}(\mbox{t}) / \mbox{n$

$$x(t) = e^{\sqrt{2t^2 + 8t + 1}}$$

✓ Solution by Mathematica

Time used: 1.447 (sec). Leaf size: 21

$$x(t) \to e^{\sqrt{2t^2 + 8t + 1}}$$

4.24 problem 12

Internal problem ID [11401]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2ty^2}{t^2 + 1} = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

$$dsolve([diff(y(t),t)=2*t*y(t)^2/(1+t^2),y(0) = 0],y(t), singsol=all)$$

$$y(t) = 0$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 6

 $DSolve[\{y'[t]==2*t*y[t]^2/(1+t^2),\{y[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]$

$$y(t) \to 0$$

4.25 problem 13

Internal problem ID [11402]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - \frac{t^2}{1 - x^2} = 0$$

With initial conditions

$$[x(1) = 1]$$

/

Solution by Maple

Time used: 0.094 (sec). Leaf size: 122

 $dsolve([diff(x(t),t)=t^2/(1-x(t)^2),x(1) = 1],x(t), singsol=all)$

$$x(t) = \frac{\left(-4 - 4t^3 + 4\sqrt{t^6 + 2t^3 - 3}\right)^{\frac{2}{3}} + 4}{2\left(-4 - 4t^3 + 4\sqrt{t^6 + 2t^3 - 3}\right)^{\frac{1}{3}}}$$

$$x(t) = -\frac{\left(1 + i\sqrt{3}\right)\left(-4 - 4t^3 + 4\sqrt{t^6 + 2t^3 - 3}\right)^{\frac{2}{3}} - 4i\sqrt{3} + 4}{4\left(-4 - 4t^3 + 4\sqrt{t^6 + 2t^3 - 3}\right)^{\frac{1}{3}}}$$

✓ Solution by Mathematica

Time used: 4.187 (sec). Leaf size: 188

 $DSolve[\{x'[t]==t^2/(1-x[t]^2),\{x[1]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} x(t) & \to \frac{\sqrt[3]{-t^3 + \sqrt{t^6 + 2t^3 - 3} - 1}}{\sqrt[3]{2}} + \frac{\sqrt[3]{2}}{\sqrt[3]{-t^3 + \sqrt{t^6 + 2t^3 - 3} - 1}} \\ x(t) & \to \frac{-i\sqrt[3]{2}\sqrt{3}\left(-t^3 + \sqrt{t^6 + 2t^3 - 3} - 1\right)^{2/3} - \sqrt[3]{2}\left(-t^3 + \sqrt{t^6 + 2t^3 - 3} - 1\right)^{2/3} + 2i\sqrt{3} - 2}{2\ 2^{2/3}\sqrt[3]{-t^3 + \sqrt{t^6 + 2t^3 - 3} - 1}} \end{split}$$

4.26 problem 15

Internal problem ID [11403]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - 6t(x-1)^{\frac{2}{3}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve(diff(x(t),t)=6*t*(x(t)-1)^(2/3),x(t), singsol=all)$

$$c_1 + t^2 - (x(t) - 1)^{\frac{1}{3}} = 0$$

✓ Solution by Mathematica

Time used: 0.298 (sec). Leaf size: 40

DSolve[x'[t]==6*t*(x[t]-1)^(2/3),x[t],t,IncludeSingularSolutions \rightarrow True]

$$x(t) \to t^6 + c_1 t^4 + \frac{c_1^2 t^2}{3} + 1 + \frac{c_1^3}{27}$$

 $x(t) \to 1$

4.27 problem 21

Internal problem ID [11404]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x' - \frac{4t^2 + 3x^2}{2tx} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

 $dsolve(diff(x(t),t)=(4*t^2+3*x(t)^2)/(2*t*x(t)),x(t), singsol=all)$

$$x(t) = \sqrt{c_1 t - 4} t$$

$$x(t) = -\sqrt{c_1 t - 4} t$$

✓ Solution by Mathematica

Time used: 0.434 (sec). Leaf size: 34

 $DSolve[x'[t] == (4*t^2+3*x[t]^2)/(2*t*x[t]), x[t], t, IncludeSingularSolutions \rightarrow True]$

$$x(t) \rightarrow -t\sqrt{-4+c_1t}$$

$$x(t) \to t\sqrt{-4 + c_1 t}$$

4.28 problem 23

Internal problem ID [11405]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 23.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$2e^{2t}x + e^{2t}x' = e^{-t}$$

With initial conditions

$$[x(0) = 3]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

dsolve([diff(x(t)*exp(2*t),t)=exp(-t),x(0) = 3],x(t), singsol=all)

$$x(t) = -\left(e^{-t} - 4\right)e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 18

DSolve[{D[x[t]*Exp[2*t],t]==Exp[-t],{x[0]==3}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-3t} \left(4e^t - 1 \right)$$

4.29 problem 24

Internal problem ID [11406]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 24.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$\frac{tx'' + x'}{t} = -2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(1/t*diff(t*diff(x(t),t),t)=-2,x(t), singsol=all)

$$x(t) = -\frac{t^2}{2} + \ln(t) c_1 + c_2$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 20

DSolve[1/t*D[t*x'[t],t]==-2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{t^2}{2} + c_1 \log(t) + c_2$$

4.30 problem 26

Internal problem ID [11407]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$y' - \frac{y^2 + 2yt}{t^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(diff(y(t),t)=(y(t)^2+2*t*y(t))/t^2,y(t), singsol=all)$

$$y(t) = \frac{t^2}{-t + c_1}$$

✓ Solution by Mathematica

Time used: 0.248 (sec). Leaf size: 23

 $\label{eq:DSolve} DSolve[y'[t] == (y[t]^2 + 2*t*y[t])/t^2, y[t], t, IncludeSingularSolutions \ -> \ True]$

$$y(t) \to -\frac{t^2}{t - c_1}$$

$$y(t) \to 0$$

4.31 problem 28

Internal problem ID [11408]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.3.1 Separable equations.

Exercises page 26

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' + y^2 e^{-t^2} = 0$$

With initial conditions

$$\left[y(0) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 16

 $dsolve([diff(y(t),t)=-y(t)^2*exp(-t^2),y(0) = 1/2],y(t), singsol=all)$

$$y(t) = \frac{2}{4 + \sqrt{\pi} \operatorname{erf}(t)}$$

✓ Solution by Mathematica

Time used: 0.365 (sec). Leaf size: 19

 $DSolve[\{y'[t]==-y[t]^2*Exp[-t^2],\{y[0]==1/2\}\},y[t],t,IncludeSingularSolutions] \rightarrow True]$

$$y(t) o rac{2}{\sqrt{\pi} \operatorname{erf}(t) + 4}$$

Chapter 1, First order differential equations. 5 Section 1.4.1. Integrating factors. Exercises page 41 60 5.1problem 1(a) 5.2 problem 1(b) 61 5.3 62 problem 1(c) 63 5.4 problem 1(d) 5.5 problem 1(e) 64 5.6 66 5.7 problem 2(a) 67 5.8 problem 2(b) 68 5.9 69 problem 2(c) 70 5.10 problem 2(d) 5.11 problem 2(e) 7172 5.13 problem 3(a) 73 74 5.14 problem 3(b) 75 5.15 problem 3(c) 5.16 problem 3(d) 76 5.17 problem 3(e) 77 78 79 80 81 82 83 84 85 86 87 88 90 91 93 94 96 99

5.35	problem	16-b(iv)															100
5.36	problem	16-b(v).													 		102
5.37	problem	16-b(vi)							 								103

5.1 problem 1(a)

Internal problem ID [11409]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 1(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' - 2t^3x = -6$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 56

 $dsolve(diff(x(t),t)=2*t^3*x(t)-6,x(t), singsol=all)$

$$x(t) = e^{\frac{t^4}{2}}c_1 - \frac{3e^{\frac{t^4}{4}}128^{\frac{7}{8}}\left(2t^4 \text{ WhittakerM}\left(\frac{1}{8}, \frac{5}{8}, \frac{t^4}{2}\right) + 5 \text{ WhittakerM}\left(\frac{9}{8}, \frac{5}{8}, \frac{t^4}{2}\right)\right)}{80t^3 \left(t^4\right)^{\frac{1}{8}}}$$

✓ Solution by Mathematica

Time used: 0.152 (sec). Leaf size: 49

DSolve[x'[t]==2*t^3*x[t]-6,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{1}{2} e^{rac{t^4}{2}} \left(rac{3\sqrt[4]{2}t\Gamma\left(rac{1}{4}, rac{t^4}{2}
ight)}{\sqrt[4]{t^4}} + 2c_1
ight)$$

5.2 problem 1(b)

Internal problem ID [11410]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 1(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\cos(t) x' - 2x \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(cos(t)*diff(x(t),t)-2*x(t)*sin(x(t))=0,x(t), singsol=all)

$$\ln\left(\sec\left(t\right) + \tan\left(t\right)\right) - \left(\int^{x(t)} \frac{1}{2_a\sin\left(_a\right)} d_a\right) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 10.596 (sec). Leaf size: 40

DSolve[Cos[t]*x'[t]-2*x[t]*Sin[x[t]]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \text{InverseFunction} \left[\int_1^{\#1} \frac{\csc(K[1])}{K[1]} dK[1] \& \right] \left[4 \operatorname{arctanh} \left(\tan \left(\frac{t}{2} \right) \right) + c_1 \right] \\ x(t) \to 0$$

5.3 problem **1**(c)

Internal problem ID [11411]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 1(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_Riccati, _special]]

$$x' + x^2 = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(x(t),t)=t-x(t)^2,x(t), singsol=all)$

$$x(t) = \frac{c_1 \operatorname{AiryAi}(1, t) + \operatorname{AiryBi}(1, t)}{c_1 \operatorname{AiryAi}(t) + \operatorname{AiryBi}(t)}$$

✓ Solution by Mathematica

Time used: 0.221 (sec). Leaf size: 223

DSolve[x'[t]==t-x[t]^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{-it^{3/2} \left(2 \operatorname{BesselJ} \left(-\frac{2}{3}, \frac{2}{3}it^{3/2}\right) + c_1 \left(\operatorname{BesselJ} \left(-\frac{4}{3}, \frac{2}{3}it^{3/2}\right) - \operatorname{BesselJ} \left(\frac{2}{3}, \frac{2}{3}it^{3/2}\right)\right)\right) - c_1 \operatorname{BesselJ} \left(-\frac{1}{3}, \frac{2}{3}it^{3/2}\right)}{2t \left(\operatorname{BesselJ} \left(\frac{1}{3}, \frac{2}{3}it^{3/2}\right) + c_1 \operatorname{BesselJ} \left(-\frac{1}{3}, \frac{2}{3}it^{3/2}\right)\right)}$$

$$x(t) \to \frac{i t^{3/2} \operatorname{BesselJ}\left(-\frac{4}{3}, \frac{2}{3} i t^{3/2}\right) - i t^{3/2} \operatorname{BesselJ}\left(\frac{2}{3}, \frac{2}{3} i t^{3/2}\right) + \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{2}{3} i t^{3/2}\right)}{2 t \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{2}{3} i t^{3/2}\right)}$$

5.4 problem 1(d)

Internal problem ID [11412]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 1(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$7t^2x' - 3x = -2t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

 $dsolve(7*t^2*diff(x(t),t)=3*x(t)-2*t,x(t), singsol=all)$

$$x(t) = \left(-\frac{2 \operatorname{Ei}_{1}\left(-\frac{3}{7t}\right)}{7} + c_{1}\right) e^{-\frac{3}{7t}}$$

✓ Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 33

DSolve[7*t^2*x'[t]==3*x[t]-2*t,x[t],t,IncludeSingularSolutions -> True]

$$x(t)
ightarrowrac{1}{7}e^{-rac{3}{7}/t}igg(2\, {
m ExpIntegralEi}\left(rac{3}{7t}
ight)+7c_1igg)$$

5.5 problem 1(e)

Internal problem ID [11413]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 1(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class A']]

$$xx' + xt = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

dsolve(x(t)*diff(x(t),t)=1-t*x(t),x(t), singsol=all)

$$x(t) = \frac{\left(2^{\frac{2}{3}}t^{2} - 4\operatorname{RootOf}\left(\operatorname{AiryBi}\left(\underline{Z}\right)2^{\frac{1}{3}}c_{1}t + 2^{\frac{1}{3}}t\operatorname{AiryAi}\left(\underline{Z}\right) - 2\operatorname{AiryBi}\left(1,\underline{Z}\right)c_{1} - 2\operatorname{AiryAi}\left(1,\underline{Z}\right)\right)\right)}{4}$$

✓ Solution by Mathematica

Time used: 0.399 (sec). Leaf size: 121

DSolve[x[t]*x'[t]==1-t*x[t],x[t],t,IncludeSingularSolutions -> True]

Solve
$$\begin{bmatrix} (-1)^{2/3}\sqrt[3]{2}t \operatorname{AiryAi} \left(-\frac{1}{2}\sqrt[3]{-\frac{1}{2}}(t^2 + 2x(t)) \right) - 2 \operatorname{AiryAiPrime} \left(-\frac{1}{2}\sqrt[3]{-\frac{1}{2}}(t^2 + 2x(t)) \right) \\ (-1)^{2/3}\sqrt[3]{2}t \operatorname{AiryBi} \left(-\frac{1}{2}\sqrt[3]{-\frac{1}{2}}(t^2 + 2x(t)) \right) - 2 \operatorname{AiryBiPrime} \left(-\frac{1}{2}\sqrt[3]{-\frac{1}{2}}(t^2 + 2x(t)) \right) \\ + c_1 = 0, x(t)$$

5.6 problem 1(f)

Internal problem ID [11414]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 1(f).

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type ['y=G(x,y')']

$${x'}^2 + tx = \sqrt{t+1}$$

X Solution by Maple

 $dsolve(diff(x(t),t)^2+t*x(t)=sqrt(1+t),x(t), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x'[t]^2+t*x[t]==Sqrt[1+t],x[t],t,IncludeSingularSolutions -> True]

Not solved

5.7 problem 2(a)

Internal problem ID [11415]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + \frac{2x}{t} = t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(x(t),t)=-(2/t)*x(t)+t,x(t), singsol=all)

$$x(t) = \frac{\frac{t^4}{4} + c_1}{t^2}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 19

DSolve[x'[t]==-(2/t)*x[t]+t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{t^2}{4} + \frac{c_1}{t^2}$$

5.8 problem 2(b)

Internal problem ID [11416]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 2(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + y = e^t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(y(t),t)+y(t)=exp(t),y(t), singsol=all)

$$y(t) = \frac{\mathrm{e}^t}{2} + \mathrm{e}^{-t}c_1$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 21

DSolve[y'[t]+y[t]==Exp[t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{e^t}{2} + c_1 e^{-t}$$

5.9 problem **2**(c)

Internal problem ID [11417]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 2(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + 2tx = e^{-t^2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(x(t),t)+2*t*x(t)=exp(-t^2),x(t), singsol=all)$

$$x(t) = (t + c_1) e^{-t^2}$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 17

DSolve[x'[t]+2*t*x[t]==Exp[-t^2],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t^2}(t+c_1)$$

5.10 problem 2(d)

Internal problem ID [11418]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 2(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x't + x = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve(t*diff(x(t),t)=-x(t)+t^2,x(t), singsol=all)$

$$x(t) = \frac{\frac{t^3}{3} + c_1}{t}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 19

DSolve[t*x'[t]==-x[t]+t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{t^2}{3} + \frac{c_1}{t}$$

5.11 problem 2(e)

Internal problem ID [11419]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 2(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$\theta' + a\theta = e^{bt}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

dsolve(diff(theta(t),t)=-a*theta(t)+exp(b*t),theta(t), singsol=all)

$$\theta(t) = \left(\frac{\mathrm{e}^{t(a+b)}}{a+b} + c_1\right) \mathrm{e}^{-at}$$

✓ Solution by Mathematica

Time used: 0.094 (sec). Leaf size: 31

DSolve[theta'[t] == -a*theta[t] + Exp[b*t], theta[t], t, IncludeSingularSolutions -> True]

$$\theta(t) \to \frac{e^{-at} \left(e^{t(a+b)} + c_1(a+b)\right)}{a+b}$$

5.12 problem 2(f)

Internal problem ID [11420]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 2(f).

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\left(t^2 + 1\right)x' + 3tx = 6t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((t^2+1)*diff(x(t),t)=-3*t*x(t)+6*t,x(t), singsol=all)$

$$x(t) = 2 + \frac{c_1}{(t^2 + 1)^{\frac{3}{2}}}$$

✓ Solution by Mathematica

Time used: 0.06 (sec). Leaf size: 24

DSolve[(t^2+1)*x'[t]==-3*t*x[t]+6*t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 2 + \frac{c_1}{(t^2 + 1)^{3/2}}$$

$$x(t) \to 2$$

5.13 problem 3(a)

Internal problem ID [11421]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 3(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + \frac{5x}{t} = t + 1$$

With initial conditions

$$[x(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(x(t),t)+(5/t)*x(t)=1+t,x(1) = 1],x(t), singsol=all)

$$x(t) = \frac{t^2}{7} + \frac{t}{6} + \frac{29}{42t^5}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 24

 $DSolve[\{x'[t]+(5/t)*x[t]==1+t,\{x[1]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{6t^7 + 7t^6 + 29}{42t^5}$$

5.14 problem 3(b)

Internal problem ID [11422]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 3(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - \left(a + \frac{b}{t}\right)x = 0$$

With initial conditions

$$[x(1) = 1]$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 14

dsolve([diff(x(t),t)=(a+b/t)*x(t),x(1) = 1],x(t), singsol=all)

$$x(t) = t^b e^{a(t-1)}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 16

 $DSolve[\{x'[t]==(a+b/t)*x[t],\{x[1]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to e^{a(t-1)}t^b$$

5.15 problem 3(c)

Internal problem ID [11423]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 3(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$R' + \frac{R}{t} = \frac{2}{t^2 + 1}$$

With initial conditions

$$[R(1) = 3\ln(2)]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 19

 $\label{eq:decomposition} $$ dsolve([diff(R(t),t)+R(t)/t=2/(1+t^2),R(1) = 3*ln(2)],R(t), singsol=all) $$$

$$R(t) = \frac{\ln(t^2 + 1) + 2\ln(2)}{t}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 17

DSolve[{R'[t]+R[t]/t==2/(1+t^2),{R[1]==Log[8]}},R[t],t,IncludeSingularSolutions -> True]

$$R(t) \to \frac{\log\left(4t^2 + 4\right)}{t}$$

5.16 problem 3(d)

Internal problem ID [11424]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 3(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$N' - N = -9 e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(N(t),t)=N(t)-9*exp(-t),N(t), singsol=all)

$$N(t) = \left(\frac{9 \operatorname{e}^{-2t}}{2} + c_1\right) \operatorname{e}^t$$

✓ Solution by Mathematica

Time used: 0.112 (sec). Leaf size: 32

DSolve[n'[t]==n[t]-9*exp[-t],n[t],t,IncludeSingularSolutions -> True]

$$n(t) o e^t igg(\int_1^t -9e^{-K[1]} \exp(-K[1]) dK[1] + c_1 igg)$$

5.17 problem 3(e)

Internal problem ID [11425]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 3(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\cos\left(\theta\right)v' + v = 3$$

With initial conditions

$$\left[v\left(\frac{\pi}{2}\right) = 1\right]$$

X Solution by Maple

dsolve([cos(theta)*diff(v(theta),theta)+v(theta)=3,v(1/2*Pi) = 1],v(theta), singsol=all)

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{Cos[theta]*v'[theta]+v[theta]==3,{v[Pi/2]==1}},v[theta],theta,IncludeSingularSolution

{}

5.18 problem 3(f)

Internal problem ID [11426]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 3(f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$R' - \frac{R}{t} = t e^{-t}$$

With initial conditions

$$[R(1) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([diff(R(t),t)=R(t)/t+t*exp(-t),R(1) = 1],R(t), singsol=all)

$$R(t) = (-e^{-t} + 1 + e^{-1}) t$$

✓ Solution by Mathematica

Time used: 0.094 (sec). Leaf size: 19

DSolve[{R'[t]==R[t]/t+t*Exp[-t],{R[1]==1}},R[t],t,IncludeSingularSolutions -> True]

$$R(t)
ightarrow \left(-e^{-t} + 1 + \frac{1}{e} \right) t$$

5.19 problem 4

Internal problem ID [11427]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section:}\ {\bf Chapter}\ 1,\ {\bf First}\ {\bf order}\ {\bf differential}\ {\bf equations.}\ {\bf Section}\ 1.4.1.\ {\bf Integrating}\ {\bf factors.}$

Exercises page 41

Problem number: 4.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$y' + ay = \sqrt{t+1}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 60

dsolve(diff(y(t),t)+a*y(t)=sqrt(1+t),y(t), singsol=all)

$$y(t) = \left(2e^{-a}\left(\frac{\sqrt{t+1}e^{(t+1)a}}{2a} - \frac{\sqrt{\pi} \operatorname{erf}(\sqrt{-a}\sqrt{t+1})}{4a\sqrt{-a}}\right) + c_1\right)e^{-at}$$

✓ Solution by Mathematica

Time used: 0.461 (sec). Leaf size: 49

DSolve[y'[t]+a*y[t]==Sqrt[1+t],y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to e^{-at} \left(\frac{ae^{-a}(t+1)^{5/2}\Gamma(\frac{3}{2}, -a(t+1))}{(-a(t+1))^{5/2}} + c_1 \right)$$

5.20 problem **5**

Internal problem ID [11428]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 5.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' - 2tx = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(diff(x(t),t)=2*t*x(t),x(t), singsol=all)

$$x(t) = c_1 e^{t^2}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 18

DSolve[x'[t]==2*t*x[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{t^2}$$

$$x(t) \to 0$$

5.21 problem 6

Internal problem ID [11429]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$x' + \frac{e^{-t}x}{t} = t$$

With initial conditions

$$[x(1) = 0]$$

Solution by Maple

Time used: 0.141 (sec). Leaf size: 23

dsolve([diff(x(t),t)+exp(-t)/t*x(t)=t,x(1) = 0],x(t), singsol=all)

$$x(t) = \left(\int_1^t _z 1 e^{-\operatorname{Ei}_1(_z 1)} d_z 1\right) e^{\operatorname{Ei}_1(t)}$$

✓ Solution by Mathematica

Time used: 0.169 (sec). Leaf size: 31

DSolve[{x'[t]+Exp[-t]/t*x[t]==t,{x[1]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-\text{ExpIntegralEi}(-t)} \int_1^t e^{\text{ExpIntegralEi}(-K[1])} K[1] dK[1]$$

5.22 problem 7

Internal problem ID [11430]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' + x' = 3t$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve(diff(x(t),t\$2)+diff(x(t),t)=3*t,x(t), singsol=all)

$$x(t) = -e^{-t}c_1 + \frac{3t^2}{2} - 3t + c_2$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 27

DSolve[x''[t]+x'[t]==3*t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{3t^2}{2} - 3t - c_1 e^{-t} + c_2$$

5.23 problem 8

Internal problem ID [11431]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 8.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$x' - (t+x)^2 = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(diff(x(t),t)=(t+x(t))^2,x(t), singsol=all)$

$$x(t) = -t - \tan\left(-t + c_1\right)$$

✓ Solution by Mathematica

Time used: 0.681 (sec). Leaf size: 14

DSolve[x'[t]==(t+x[t])^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -t + \tan(t + c_1)$$

5.24 problem 9

Internal problem ID [11432]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - ax = b$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t)=a*x(t)+b,x(t), singsol=all)

$$x(t) = -\frac{b}{a} + e^{at}c_1$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 30

DSolve[x'[t]==a*x[t]+b,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{b}{a} + c_1 e^{at}$$

$$x(t) \to -\frac{b}{a}$$

5.25 problem 12

Internal problem ID [11433]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + p(t) x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(diff(x(t),t)+p(t)*x(t)=0,x(t), singsol=all)

$$x(t) = c_1 \mathrm{e}^{\int -p(t)dt}$$

✓ Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 27

DSolve[x'[t]+p[t]*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 \exp\left(\int_1^t -p(K[1])dK[1]\right)$$

 $x(t) \to 0$

5.26 problem 15(a)

Internal problem ID [11434]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 15(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$x' - \frac{2x}{3t} - \frac{2t}{x} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(x(t),t)=2/(3*t)*x(t)+2*t/x(t),x(t), singsol=all)

$$x(t) = \sqrt{t^{\frac{4}{3}}c_1 + 6t^2}$$

$$x(t) = -\sqrt{t^{\frac{4}{3}}c_1 + 6t^2}$$

✓ Solution by Mathematica

Time used: 5.087 (sec). Leaf size: 47

 $DSolve[x'[t]==2/(3*t)*x[t]+2*t/x[t],x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to -\sqrt{6t^2 + c_1 t^{4/3}}$$

$$x(t) \to \sqrt{6t^2 + c_1 t^{4/3}}$$

5.27 problem 15(b)

Internal problem ID [11435]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 15(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Bernoulli]

$$x' - x(1 + x e^t) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

dsolve(diff(x(t),t)=x(t)*(1+x(t)*exp(t)),x(t), singsol=all)

$$x(t) = \frac{2}{2 e^{-t} c_1 - e^t}$$

✓ Solution by Mathematica

Time used: 0.323 (sec). Leaf size: 27

DSolve[x'[t]==x[t]*(1+x[t]*Exp[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{2e^t}{e^{2t} - 2c_1}$$

$$x(t) \to 0$$

problem 15(c) 5.28

Internal problem ID [11436]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 15(c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x' + \frac{x}{t} - \frac{1}{tx^2} = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 75

 $dsolve(diff(x(t),t)=-1/t*x(t)+1/(t*x(t)^2),x(t), singsol=all)$

$$x(t) = \frac{\left(t^3 + c_1\right)^{\frac{1}{3}}}{t}$$

$$x(t) = \frac{-\frac{\left(t^3 + c_1\right)^{\frac{1}{3}}}{2} - \frac{i\sqrt{3}\left(t^3 + c_1\right)^{\frac{1}{3}}}{2}}{t}}{t}$$

$$x(t) = \frac{-\frac{\left(t^3 + c_1\right)^{\frac{1}{3}}}{2} + \frac{i\sqrt{3}\left(t^3 + c_1\right)^{\frac{1}{3}}}{2}}{t}}{t}$$

✓ Solution by Mathematica

Time used: 0.456 (sec). Leaf size: 159

 $DSolve[x'[t] == -1/t * x[t] + 1/(t * x[t]^2), x[t], t, IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{\sqrt[3]{t^3 + e^{3c_1}}}{t}$$

$$x(t) \to -\frac{\sqrt[3]{-1}\sqrt[3]{t^3 + e^{3c_1}}}{t}$$

$$x(t) \to \frac{(-1)^{2/3}\sqrt[3]{t^3 + e^{3c_1}}}{t}$$

$$x(t) \to 1$$

$$x(t) \to -\sqrt[3]{-1}$$

$$x(t) \to (-1)^{2/3}$$

$$x(t) \to \frac{\sqrt[3]{t^3}}{t}$$

$$x(t) \to -\frac{\sqrt[3]{-1}\sqrt[3]{t^3}}{t}$$

$$x(t) \to \frac{(-1)^{2/3}\sqrt[3]{t^3}}{t}$$

5.29 problem 15(d)

Internal problem ID [11437]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 15(d).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Bernoulli]

$$t^2y' + 2yt - y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(t^2*diff(y(t),t)+2*t*y(t)-y(t)^2=0,y(t), singsol=all)$

$$y(t) = \frac{3t}{3c_1t^3 + 1}$$

✓ Solution by Mathematica

Time used: 0.246 (sec). Leaf size: 24

DSolve[t^2*y'[t]+2*t*y[t]-y[t]^2==0,y[t],t,IncludeSingularSolutions -> True]

$$y(t) \to \frac{3t}{1 + 3c_1t^3}$$

$$y(t) \to 0$$

problem 15(e) 5.30

Internal problem ID [11438]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 15(e).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$x' - ax - bx^3 = 0$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 70

 $dsolve(diff(x(t),t)=a*x(t)+b*x(t)^3,x(t), singsol=all)$

$$x(t) = \frac{\sqrt{(c_1 a e^{-2at} - b) a}}{c_1 a e^{-2at} - b}$$

$$x(t) = \frac{\sqrt{(c_1 a e^{-2at} - b) a}}{c_1 a e^{-2at} - b}$$
$$x(t) = -\frac{\sqrt{(c_1 a e^{-2at} - b) a}}{c_1 a e^{-2at} - b}$$

Solution by Mathematica

Time used: 2.841 (sec). Leaf size: 118

DSolve[x'[t]==a*x[t]+b*x[t]^3,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{i\sqrt{a}e^{a(t+c_1)}}{\sqrt{-1 + be^{2a(t+c_1)}}}$$

 $x(t) \to \frac{i\sqrt{a}e^{a(t+c_1)}}{\sqrt{-1 + be^{2a(t+c_1)}}}$

$$x(t) \to \frac{\checkmark}{\sqrt{-1 + be^{2a(t+c_1)}}}$$

$$x(t) \to 0$$

$$x(t) \to -\frac{i\sqrt{a}}{\sqrt{b}}$$

$$x(t) o rac{i\sqrt{a}}{\sqrt{b}}$$

5.31 problem 15(f)

Internal problem ID [11439]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 15(f).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_Bernoulli]

$$w' - wt - t^3w^3 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

 $dsolve(diff(w(t),t)=t*w(t)+t^3*w(t)^3,w(t), singsol=all)$

$$w(t) = \frac{1}{\sqrt{e^{-t^2}c_1 - t^2 + 1}}$$

$$w(t) = -\frac{1}{\sqrt{e^{-t^2}c_1 - t^2 + 1}}$$

✓ Solution by Mathematica

Time used: 2.07 (sec). Leaf size: 80

DSolve[w'[t]==t*w[t]+t^3*w[t]^3,w[t],t,IncludeSingularSolutions -> True]

$$w(t) o -rac{ie^{rac{t^2}{2}}}{\sqrt{e^{t^2}(t^2-1)-c_1}}$$

$$w(t) o rac{ie^{rac{t^2}{2}}}{\sqrt{e^{t^2}(t^2-1)-c_1}}$$

$$w(t) \to 0$$

5.32 problem 16-b(i)

Internal problem ID [11440]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 16-b(i).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^3 + 3x'tx^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 88

 $dsolve(x(t)^3+3*t*x(t)^2*diff(x(t),t)=0,x(t), singsol=all)$

$$x(t) = 0$$

$$x(t) = \frac{(-c_1 t^2)^{\frac{1}{3}}}{t}$$

$$x(t) = -\frac{(-c_1 t^2)^{\frac{1}{3}}}{2t} - \frac{i\sqrt{3}(-c_1 t^2)^{\frac{1}{3}}}{2t}$$

$$x(t) = -\frac{(-c_1 t^2)^{\frac{1}{3}}}{2t} + \frac{i\sqrt{3}(-c_1 t^2)^{\frac{1}{3}}}{2t}$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 23

 $\label{eq:DSolve} DSolve[x[t]^3+3*t*x[t]^2*x'[t]==0,x[t],t,IncludeSingularSolutions \ -> \ True]$

$$x(t) \to 0$$

$$x(t) \to \frac{c_1}{\sqrt[3]{t}}$$

$$x(t) \to 0$$

5.33 problem 16-b(ii)

Internal problem ID [11441]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 16-b(ii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$\frac{x}{t} + (x^2 + \ln(t)) x' = -t^3$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 415

 $dsolve(t^3+x(t)/t+(x(t)^2+ln(t))*diff(x(t),t)=0,x(t), singsol=all)$

$$x(t) = \frac{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}{2 2 \ln{(t)}}$$

$$-\frac{2}{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}}{4}$$

$$x(t) = -\frac{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}{4}$$

$$+\frac{\ln{(t)}}{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}}$$

$$-\frac{i\sqrt{3}\left(\frac{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2 \ln{(t)}}{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}}\right)}$$

$$+\frac{1\ln{(t)}}{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}}$$

$$+\frac{1\sqrt{3}\left(\frac{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2 \ln{(t)}}{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}}$$

$$+\frac{1\sqrt{3}\left(\frac{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2 \ln{(t)}}{\left(-3t^4 - 12c_1 + \sqrt{64 \ln{(t)}^3 + 9t^8 + 72t^4c_1 + 144c_1^2}\right)^{\frac{1}{3}}}}\right)$$

✓ Solution by Mathematica

Time used: 2.922 (sec). Leaf size: 307

DSolve[t^3+x[t]/t+(x[t]^2+Log[t])*x'[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \frac{-4\log(t) + \left(-3t^4 + \sqrt{64\log^3(t) + 9\left(t^4 - 4c_1\right)^2} + 12c_1\right)^{2/3}}{2\sqrt[3]{-3t^4 + \sqrt{64\log^3(t) + 9\left(t^4 - 4c_1\right)^2} + 12c_1}}$$

$$x(t) \rightarrow \frac{i(\sqrt{3} + i)\left(-3t^4 + \sqrt{64\log^3(t) + 9\left(t^4 - 4c_1\right)^2} + 12c_1\right)^{2/3} + \left(4 + 4i\sqrt{3}\right)\log(t)}{4\sqrt[3]{-3t^4 + \sqrt{64\log^3(t) + 9\left(t^4 - 4c_1\right)^2} + 12c_1}}$$

$$x(t) \rightarrow \frac{(-1 - i\sqrt{3})\left(-3t^4 + \sqrt{64\log^3(t) + 9\left(t^4 - 4c_1\right)^2} + 12c_1\right)^{2/3} + \left(4 - 4i\sqrt{3}\right)\log(t)}{4\sqrt[3]{-3t^4 + \sqrt{64\log^3(t) + 9\left(t^4 - 4c_1\right)^2} + 12c_1}}$$

5.34 problem 16-b(iii)

Internal problem ID [11442]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 16-b(iii).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [NONE]

$$x' + \frac{\sin(x) - x\sin(t)}{t\cos(x) + \cos(t)} = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 15

dsolve(diff(x(t),t)=-(sin(x(t))-x(t)*sin(t))/(t*cos(x(t))+cos(t)),x(t), singsol=all)

$$x(t)\cos(t) + t\sin(x(t)) + c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.27 (sec). Leaf size: 17

DSolve[x'[t] == - (Sin[x[t]] - x[t] * Sin[t]) / (t * Cos[x[t]] + Cos[t]), x[t], t, IncludeSingularSolutions]

$$Solve[t\sin(x(t)) + x(t)\cos(t) = c_1, x(t)]$$

5.35 problem 16-b(iv)

Internal problem ID [11443]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 16-b(iv).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x + 3x'tx^2 = 0$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 35

 $dsolve(x(t)+3*t*x(t)^2*diff(x(t),t)=0,x(t), singsol=all)$

$$x(t) = 0$$

$$x(t) = -\frac{\sqrt{-6\ln(t) + 9c_1}}{3}$$

$$x(t) = \frac{\sqrt{-6\ln(t) + 9c_1}}{3}$$

✓ Solution by Mathematica

Time used: 0.113 (sec). Leaf size: 51

DSolve[x[t]+3*t*x[t]^2*x'[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 0$$

$$x(t) \to -\sqrt{-\frac{2\log(t)}{3} + 2c_1}$$

$$x(t) \to \sqrt{-\frac{2\log(t)}{3} + 2c_1}$$

$$x(t) \to 0$$

5.36 problem 16-b(v)

Internal problem ID [11444]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 16-b(v).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x^2 - t^2 x' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

 $dsolve(x(t)^2-t^2*diff(x(t),t)=0,x(t), singsol=all)$

$$x(t) = \frac{t}{c_1 t + 1}$$

✓ Solution by Mathematica

Time used: 0.192 (sec). Leaf size: 21

DSolve[x[t]^2-t^2*x'[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{t}{1 - c_1 t}$$

$$x(t) \to 0$$

5.37 problem 16-b(vi)

Internal problem ID [11445]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 1, First order differential equations. Section 1.4.1. Integrating factors.

Exercises page 41

Problem number: 16-b(vi).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$t\cot\left(x\right)x'=-2$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 10

dsolve(t*cot(x(t))*diff(x(t),t)=-2,x(t), singsol=all)

$$x(t) = \arcsin\left(\frac{c_1}{t^2}\right)$$

✓ Solution by Mathematica

Time used: 0.122 (sec). Leaf size: 14

DSolve[t*Cot[x[t]]*x'[t]==-2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o \arcsin\left(\frac{e^{c_1}}{t^2}\right)$$

6	Chapter	Chapter 2, Second order linear equations.																																		
	Section	2	. 2	2.	.2		R	le	a	ıl	ϵ	ei	g	e :	n	V	\mathbf{a}	lι	16	25	5.]	E	X	e	r	C	is	s e	S]	p	\mathbf{a}	g	e	90
6.1	problem 1(a)																																			105
6.2	problem 1(b)																																			106
6.3	problem 1(c)																																			107
6.4	problem 1(d)																																			108
6.5	problem 3(a)																																			109
6.6	problem 3(b)																																			110
6.7	problem 3(c)																																			111
6.8	problem 3(d)													_							_										_			_		112

6.1 problem 1(a)

Internal problem ID [11446]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

page 90

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 4x' + 4x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 14

dsolve([diff(x(t),t\$2)-4*diff(x(t),t)+4*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = e^{2t}(-2t+1)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 16

DSolve[{x''[t]-4*x'[t]+4*x[t]==0,{x[0]==1,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True

$$x(t) \to e^{2t}(1-2t)$$

6.2 problem 1(b)

Internal problem ID [11447]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

page 90

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2x' = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

$$dsolve([diff(x(t),t$2)-2*diff(x(t),t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)$$

$$x(t) = 1$$

✓ Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 6

$$x(t) \to 1$$

6.3 problem 1(c)

Internal problem ID [11448]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

page 90

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\frac{x''}{2} + x' + \frac{x}{2} = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 12

$$x(t) = e^{-t}(t+1)$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 14

DSolve[{1/2*x''[t]+x'[t]+1/2*x[t]==0,{x[0]==1,x'[0]==0}},x[t],t,IncludeSingularSolutions ->

$$x(t) \rightarrow e^{-t}(t+1)$$

6.4 problem 1(d)

Internal problem ID [11449]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

page 90

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 4x' + 3x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(x(t),t\$2)+4*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{3e^{-t}}{2} - \frac{e^{-3t}}{2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 23

$$x(t) \to \frac{1}{2}e^{-3t} (3e^{2t} - 1)$$

6.5 problem 3(a)

Internal problem ID [11450]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}$: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

page 90

Problem number: 3(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 4x' + 4x = 0$$

With initial conditions

$$[x(0) = -1, x'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve([diff(x(t),t\$2)-4*diff(x(t),t)+4*x(t)=0,x(0) = -1, D(x)(0) = 2],x(t), singsol=all)

$$x(t) = e^{2t}(-1 + 4t)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 16

$$x(t) \to e^{2t}(4t - 1)$$

6.6 problem 3(b)

Internal problem ID [11451]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}$: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

page 90

Problem number: 3(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2x' = 0$$

With initial conditions

$$[x(0) = -1, x'(0) = 2]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(x(t),t\$2)-2*diff(x(t),t)=0,x(0) = -1, D(x)(0) = 2],x(t), singsol=all)

$$x(t) = -2 + e^{2t}$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 12

 $DSolve[\{x''[t]-2*x'[t]==0,\{x[0]==-1,x'[0]==2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to e^{2t} - 2$$

6.7 problem 3(c)

Internal problem ID [11452]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

page 90

Problem number: 3(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\frac{x''}{2} + x' + \frac{x}{2} = 0$$

With initial conditions

$$[x(0) = -1, x'(0) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

$$x(t) = e^{-t}(t-1)$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 14

DSolve[{1/2*x''[t]+x'[t]+1/2*x[t]==0,{x[0]==-1,x'[0]==2}},x[t],t,IncludeSingularSolutions ->

$$x(t) \rightarrow e^{-t}(t-1)$$

6.8 problem 3(d)

Internal problem ID [11453]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.2 Real eigenvalues. Exercises

 $page\ 90$

Problem number: 3(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 4x' + 3x = 0$$

With initial conditions

$$[x(0) = -1, x'(0) = 2]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve([diff(x(t),t\$2)+4*diff(x(t),t)+3*x(t)=0,x(0) = -1, D(x)(0) = 2],x(t), singsol=all)

$$x(t) = -\frac{e^{-t}}{2} - \frac{e^{-3t}}{2}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 21

$$x(t) \rightarrow -\frac{1}{2}e^{-3t} \left(e^{2t}+1\right)$$

7	Chapter 2, Second order linear equations.	
	Section 2.2.3 Complex eigenvalues. Exercises	
	page 94	
7.1	problem 1(a)	4
7.2	problem 1(b)	.5

7.3

7.4

7.57.6

problem 1(c)

problem 1(e)

116

7.1 problem 1(a)

Internal problem ID [11454]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}:$ Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Ex-

ercises page 94

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + x' + 4x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 31

dsolve([diff(x(t),t\$2)+diff(x(t),t)+4*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{e^{-\frac{t}{2}} \left(\sqrt{15} \sin\left(\frac{\sqrt{15}t}{2}\right) + 15\cos\left(\frac{\sqrt{15}t}{2}\right)\right)}{15}$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 47

$$x(t) o \frac{1}{15}e^{-t/2} \left(\sqrt{15}\sin\left(\frac{\sqrt{15}t}{2}\right) + 15\cos\left(\frac{\sqrt{15}t}{2}\right)\right)$$

7.2 problem 1(b)

Internal problem ID [11455]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

 $Verlag,\ NY.\ 2015.$

Section: Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Ex-

ercises page 94

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 4x' + 6x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 29

dsolve([diff(x(t),t\$2)-4*diff(x(t),t)+6*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = -e^{2t} \left(\sqrt{2} \sin \left(\sqrt{2} t \right) - \cos \left(\sqrt{2} t \right) \right)$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 35

$$x(t) \to e^{2t} \left(\cos\left(\sqrt{2}t\right) - \sqrt{2}\sin\left(\sqrt{2}t\right)\right)$$

7.3 problem 1(c)

Internal problem ID [11456]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}$: Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Ex-

ercises page 94

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + 9x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 8

$$\label{eq:decomposition} dsolve([diff(x(t),t\$2)+9*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)$$

$$x(t) = \cos\left(3t\right)$$

✓ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 9

$$DSolve[\{x''[t]+9*x[t]==0,\{x[0]==1,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$$

$$x(t) \to \cos(3t)$$

7.4 problem 1(d)

Internal problem ID [11457]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Exercises page 94

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 12x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 23

 $\label{eq:decomposition} \\ \mbox{dsolve}([\mbox{diff}(\mbox{x}(\mbox{t}),\mbox{t$\$2$}) - 12*\mbox{x}(\mbox{t}) = 0, \\ \mbox{x}(\mbox{0}) = 1, \\ \mbox{D}(\mbox{x})(\mbox{0}) = 0], \\ \mbox{x}(\mbox{t}), \\ \mbox{singsol=all}) \\$

$$x(t) = \frac{e^{2\sqrt{3}t}}{2} + \frac{e^{-2\sqrt{3}t}}{2}$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 31

 $DSolve[\{x''[t]-12*x[t]==0,\{x[0]==1,x'[0]==0\}\},x[t],t,IncludeSingularSolutions] \rightarrow True]$

$$x(t) \to \frac{1}{2} e^{-2\sqrt{3}t} \left(e^{4\sqrt{3}t} + 1 \right)$$

7.5 problem 1(e)

Internal problem ID [11458]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

 $Verlag,\ NY.\ 2015.$

 ${f Section}:$ Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Ex-

ercises page 94

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$2x'' + 3x' + 3x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 31

| dsolve([2*diff(x(t),t\$2)+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | singsol=all) | dsolve([2*diff(x(t),t\$2)+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | singsol=all) | dsolve([2*diff(x(t),t\$2)+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | singsol=all) | dsolve([2*diff(x(t),t\$2]+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | singsol=all) | dsolve([2*diff(x(t),t)\$2]+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | singsol=all) | dsolve([2*diff(x(t),t)\$2]+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | singsol=all) | dsolve([2*diff(x(t),t)\$2]+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | singsol=all) | dsolve([2*diff(x(t),t)\$2]+3*diff(x(t),t)+3*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), | dsolve([2*diff(x(t),t)\$2]+3*diff(x(t),t)+3*x(t)=0,x(t)=

$$x(t) = \frac{e^{-\frac{3t}{4}} \left(\sqrt{15} \sin\left(\frac{\sqrt{15}t}{4}\right) + 5\cos\left(\frac{\sqrt{15}t}{4}\right)\right)}{5}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 42

$$x(t) \to e^{-3t/2} \left(\sqrt{3} \sin \left(\frac{\sqrt{3}t}{2} \right) + \cos \left(\frac{\sqrt{3}t}{2} \right) \right)$$

7.6 problem 1(f)

Internal problem ID [11459]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.3 Complex eigenvalues. Ex-

ercises page 94

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$\boxed{\frac{x''}{2} + \frac{5x'}{6} + \frac{2x}{9} = 0}$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([1/2*diff(x(t),t\$2)+5/6*diff(x(t),t)+2/9*x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=0

$$x(t) = -\frac{e^{-\frac{4t}{3}}}{3} + \frac{4e^{-\frac{t}{3}}}{3}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 23

DSolve[{1/2*x''[t]+5/6*x'[t]+2/9*x[t]==0,{x[0]==1,x'[0]==0}},x[t],t,IncludeSingularSolutions

$$x(t) \to \frac{1}{3}e^{-4t/3} (4e^t - 1)$$

8	Chapter 2, Second order linear equations.
	Section 2.2.4. Applications. Exercises page 99
8.1	problem 1
8.2	problem 2

8.1 problem 1

Internal problem ID [11460]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.4. Applications. Exercises

page 99

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + x' + x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 28

dsolve([diff(x(t),t\$2)+diff(x(t),t)+x(t)=0,x(0) = 1, D(x)(0) = 1],x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \left(\sqrt{3} \sin \left(\frac{\sqrt{3}t}{2} \right) + \cos \left(\frac{\sqrt{3}t}{2} \right) \right)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 42

 $DSolve[\{x''[t]+x'[t]+x[t]==0,\{x[0]==1,x'[0]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to e^{-t/2} \left(\sqrt{3} \sin \left(\frac{\sqrt{3}t}{2} \right) + \cos \left(\frac{\sqrt{3}t}{2} \right) \right)$$

8.2 problem 2

Internal problem ID [11461]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.2.4. Applications. Exercises page 99

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + \frac{x'}{8} + x = 0$$

With initial conditions

$$[x(0) = 2, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 31

dsolve([diff(x(t),t\$2)+125/1000*diff(x(t),t)+x(t)=0,x(0) = 2, D(x)(0) = 0],x(t), singsol=all(x,t)

$$x(t) = \frac{2e^{-\frac{t}{16}}\left(\sqrt{255}\sin\left(\frac{\sqrt{255}t}{16}\right) + 255\cos\left(\frac{\sqrt{255}t}{16}\right)\right)}{255}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 47

DSolve[{x''[t]+125/1000*x'[t]+x[t]==0,{x[0]==2,x'[0]==0}},x[t],t,IncludeSingularSolutions ->

$$x(t) \to \frac{2}{255} e^{-t/16} \left(\sqrt{255} \sin \left(\frac{\sqrt{255}t}{16} \right) + 255 \cos \left(\frac{\sqrt{255}t}{16} \right) \right)$$

Chapter 2, Second order linear equations. 9 Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110 9.1 problem 1(a) 1249.2problem 1(b) 1259.3 126 problem 1(c) 127 9.4problem 1(d) 9.5 problem 1(e) 128 9.6 problem 1(f). 129 9.7 problem 1(g) 130 9.8 problem 1(h) 131 9.9132problem $1(i) \dots \dots$ 9.10 problem 1(j). 133 9.11 problem 1(k) 1349.12 problem 1(L) 135 9.13 problem 2(a) 136 9.14 problem 2(b) 137 138 9.15 problem 2(c) 9.16 problem 2(d) 139 9.17 problem 2(e) 140 9.18 problem 2(g) 141 9.19 problem 2(h) 143 9.22 problem 5

9.1 problem 1(a)

Internal problem ID [11462]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = 3t^3 - 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 42

 $dsolve(diff(x(t),t)^2)+diff(x(t),t)+x(t)=3*t^3-1,x(t), singsol=all)$

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + 3t^3 - 9t^2 + 17$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 59

DSolve[x''[t]+x'[t]+x[t]==3*t^3-1,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 3t^3 - 9t^2 + c_2 e^{-t/2} \cos\left(\frac{\sqrt{3}t}{2}\right) + c_1 e^{-t/2} \sin\left(\frac{\sqrt{3}t}{2}\right) + 17$$

9.2 problem 1(b)

Internal problem ID [11463]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = 3\cos(t) - 2\sin(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

dsolve(diff(x(t),t\$2)+diff(x(t),t)+x(t)=3*cos(t)-2*sin(t),x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + 3\sin(t) + 2\cos(t)$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 56

DSolve[x''[t]+x'[t]+x[t]==3*Cos[t]-2*Sin[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 3\sin(t) + 2\cos(t) + c_2 e^{-t/2} \cos\left(\frac{\sqrt{3}t}{2}\right) + c_1 e^{-t/2} \sin\left(\frac{\sqrt{3}t}{2}\right)$$

9.3 problem 1(c)

Internal problem ID [11464]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section:}\ {\bf Chapter}\ 2, {\bf Second}\ {\bf order}\ {\bf linear}\ {\bf equations.}\ {\bf Section}\ 2.3.1\ {\bf Nonhomogeneous}\ {\bf Equations:}$

Undetermined Coefficients. Exercises page 110

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' + x' + x = 12$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(x(t),t)+diff(x(t),t)+x(t)=12,x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + 12$$

✓ Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 49

DSolve[x''[t]+x'[t]+x[t]==12,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_2 e^{-t/2} \cos\left(\frac{\sqrt{3}t}{2}\right) + c_1 e^{-t/2} \sin\left(\frac{\sqrt{3}t}{2}\right) + 12$$

9.4 problem 1(d)

Internal problem ID [11465]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = t^2 e^{3t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

 $dsolve(diff(x(t),t)^2)+diff(x(t),t)+x(t)=t^2*exp(3*t),x(t), singsol=all)$

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + \frac{(169t^2 - 182t + 72)e^{3t}}{2197}$$

✓ Solution by Mathematica

Time used: 0.032 (sec). Leaf size: 62

DSolve[x''[t]+x'[t]+x[t]==t^2*exp(3*t),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t/2} \left(3 \exp e^{t/2} \left(t^3 - 3t^2 + 6 \right) + c_2 \cos \left(\frac{\sqrt{3}t}{2} \right) + c_1 \sin \left(\frac{\sqrt{3}t}{2} \right) \right)$$

9.5 problem 1(e)

Internal problem ID [11466]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = 5\sin\left(7t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

dsolve(diff(x(t),t)+diff(x(t),t)+x(t)=5*sin(7*t),x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 - \frac{240\sin(7t)}{2353} - \frac{35\cos(7t)}{2353}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 65

 $DSolve[x''[t]+x'[t]+x[t]==5*Sin[7*t],x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to -\frac{5(48\sin(7t) + 7\cos(7t))}{2353} + c_2 e^{-t/2} \cos\left(\frac{\sqrt{3}t}{2}\right) + c_1 e^{-t/2} \sin\left(\frac{\sqrt{3}t}{2}\right)$$

9.6 problem 1(f)

Internal problem ID [11467]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = e^{2t}\cos(t) + t^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 52

 $dsolve(diff(x(t),t\$2)+diff(x(t),t)+x(t)=exp(2*t)*cos(t)+t^2,x(t), singsol=all)$

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + \frac{(6\cos(t) + 5\sin(t))e^{2t}}{61} + t^2 - 2t$$

✓ Solution by Mathematica

Time used: 2.836 (sec). Leaf size: 76

DSolve[x''[t]+x'[t]+x[t]==Exp[2*t]*Cos[t]+t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t^2 - 2t + \frac{5}{61}e^{2t}\sin(t) + \frac{6}{61}e^{2t}\cos(t) + c_2e^{-t/2}\cos\left(\frac{\sqrt{3}t}{2}\right) + c_1e^{-t/2}\sin\left(\frac{\sqrt{3}t}{2}\right)$$

9.7 problem 1(g)

Internal problem ID [11468]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations:

Undetermined Coefficients. Exercises page 110

Problem number: 1(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = t e^{-t} \sin(\pi t)$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 108

dsolve(diff(x(t),t\$2)+diff(x(t),t)+x(t)=t*exp(-t)*sin(Pi*t),x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1$$
$$-\frac{e^{-t}((\pi^6t + (-2t + 3)\pi^4 + (2t - 1)\pi^2 - 1 - t)\sin(\pi t) - ((t - 2)\pi^4 + (-t + 4)\pi^2 + t)\cos(\pi t)\pi)}{(\pi^4 - \pi^2 + 1)^2}$$

✓ Solution by Mathematica

Time used: 0.155 (sec). Leaf size: 123

DSolve[x''[t]+x'[t]+x[t]==t*Exp[-t]*Sin[Pi*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t} \left(\frac{(\pi^2(1-2t) - \pi^6t + t + \pi^4(2t-3) + 1)\sin(\pi t) + \pi(-\pi^2(t-4) + \pi^4(t-2) + t)\cos(\pi t)}{(1-\pi^2 + \pi^4)^2} + c_2 e^{t/2} \cos\left(\frac{\sqrt{3}t}{2}\right) + c_1 e^{t/2} \sin\left(\frac{\sqrt{3}t}{2}\right) \right)$$

9.8 problem 1(h)

Internal problem ID [11469]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = (t+2)\sin(\pi t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 106

 $\label{eq:diff} dsolve(diff(x(t),t\$2)+diff(x(t),t)+x(t)=(t+2)*sin(Pi*t),x(t), singsol=all)$

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + \frac{((-t-2)\pi^6 + (2t+7)\pi^4 + (-2t-5)\pi^2 + t + 1)\sin(\pi t) - \cos(\pi t)\pi((t+4)\pi^4 + (-t-6)\pi^2 + t + 1)}{(\pi^4 - \pi^2 + 1)^2}$$

✓ Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 122

DSolve[x''[t]+x'[t]+x[t]==(t+2)*Sin[Pi*t],x[t],t,IncludeSingularSolutions -> True]

$$\frac{x(t)}{\Rightarrow \frac{(t - \pi^{6}(t+2) - \pi^{2}(2t+5) + \pi^{4}(2t+7) + 1)\sin(\pi t) - \pi(t + \pi^{4}(t+4) - \pi^{2}(t+6) + 2)\cos(\pi t)}{(1 - \pi^{2} + \pi^{4})^{2}} + c_{2}e^{-t/2}\cos\left(\frac{\sqrt{3}t}{2}\right) + c_{1}e^{-t/2}\sin\left(\frac{\sqrt{3}t}{2}\right)$$

9.9 problem 1(i)

Internal problem ID [11470]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + x' + x = 4t + 5e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

dsolve(diff(x(t),t))+diff(x(t),t)+x(t)=4*t+5*exp(-t),x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + 4t - 4 + 5e^{-t}$$

✓ Solution by Mathematica

Time used: 4.02 (sec). Leaf size: 59

DSolve[x''[t]+x'[t]+x[t]==4*t+5*Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to 4t + 5e^{-t} + c_2 e^{-t/2} \cos\left(\frac{\sqrt{3}t}{2}\right) + c_1 e^{-t/2} \sin\left(\frac{\sqrt{3}t}{2}\right) - 4$$

9.10 problem 1(j)

Internal problem ID [11471]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(j).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = 5\sin(2t) + te^{t}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 50

dsolve(diff(x(t),t)+diff(x(t),t)+x(t)=5*sin(2*t)+t*exp(t),x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 - \frac{10\cos(2t)}{13} - \frac{15\sin(2t)}{13} + \frac{e^t(t-1)}{3}$$

✓ Solution by Mathematica

Time used: 5.753 (sec). Leaf size: 83

DSolve[x''[t]+x'[t]+x[t]==5*Sin[2*t]+t*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{39} \left(-13e^t + 13e^t t + 30\sin^2(t) - 30\cos^2(t) - 90\sin(t)\cos(t) + 39c_2e^{-t/2}\cos\left(\frac{\sqrt{3}t}{2}\right) + 39c_1e^{-t/2}\sin\left(\frac{\sqrt{3}t}{2}\right) \right)$$

9.11 problem 1(k)

Internal problem ID [11472]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(k).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = t^3 + 1 - 4\cos(t)t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 52

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(\texttt{x}(\texttt{t}),\texttt{t}\$2) + \text{diff}(\texttt{x}(\texttt{t}),\texttt{t}) + \texttt{x}(\texttt{t}) = \texttt{t}^3 + 1 - 4 * \texttt{t} * \cos(\texttt{t}), \texttt{x}(\texttt{t}), \text{ singsol=all}) \\$

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 + (-4t + 8) \sin(t) + t^3 - 3t^2 - 4\cos(t) + 7t^3 + 3t^2 - 4\cos(t) + 3t^2 - 3t^2$$

✓ Solution by Mathematica

Time used: 4.528 (sec). Leaf size: 70

DSolve[x''[t]+x'[t]+x[t]==t^3+1-4*t*Cos[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t^3 - 3t^2 - 4t\sin(t) + 8\sin(t) - 4\cos(t) + c_2e^{-t/2}\cos\left(\frac{\sqrt{3}t}{2}\right) + c_1e^{-t/2}\sin\left(\frac{\sqrt{3}t}{2}\right) + 7$$

9.12 problem 1(L)

Internal problem ID [11473]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 1(L).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + x = -6 + 2e^{2t}\sin(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 47

dsolve(diff(x(t),t)+diff(x(t),t)+x(t)=-6+2*exp(2*t)*sin(t),x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{3}t}{2}\right) c_1 - 6 + \frac{2(-5\cos(t) + 6\sin(t))e^{2t}}{61}$$

✓ Solution by Mathematica

Time used: 1.794 (sec). Leaf size: 71

DSolve[x''[t]+x'[t]+x[t]==-6+2*Exp[2*t]*Sin[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{12}{61}e^{2t}\sin(t) - \frac{10}{61}e^{2t}\cos(t) + c_2e^{-t/2}\cos\left(\frac{\sqrt{3}t}{2}\right) + c_1e^{-t/2}\sin\left(\frac{\sqrt{3}t}{2}\right) - 6$$

9.13 problem 2(a)

Internal problem ID [11474]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 7x = t e^{3t}$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

dsolve(diff(x(t),t\$2)+7*x(t)=t*exp(3*t),x(t), singsol=all)

$$x(t) = \sin\left(\sqrt{7}t\right)c_2 + \cos\left(\sqrt{7}t\right)c_1 + \frac{(8t-3)e^{3t}}{128}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 42

DSolve[x''[t]+7*x[t]==t*Exp[3*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{128}e^{3t}(8t-3) + c_1 \cos(\sqrt{7}t) + c_2 \sin(\sqrt{7}t)$$

9.14 problem 2(b)

Internal problem ID [11475]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section:}\ {\bf Chapter}\ 2, {\bf Second}\ {\bf order}\ {\bf linear}\ {\bf equations.}\ {\bf Section}\ 2.3.1\ {\bf Nonhomogeneous}\ {\bf Equations:}$

Undetermined Coefficients. Exercises page 110

Problem number: 2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' - x' = 6 + e^{2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(x(t),t)^2)-diff(x(t),t)=6+exp(2*t),x(t), singsol=all)$

$$x(t) = c_1 e^t + \frac{e^{2t}}{2} - 6t + c_2$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 26

DSolve[x''[t]-x'[t]==6+Exp[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -6t + \frac{e^{2t}}{2} + c_1 e^t + c_2$$

9.15 problem 2(c)

Internal problem ID [11476]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations:

Undetermined Coefficients. Exercises page 110

Problem number: 2(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + x = t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(diff(x(t),t$2)+x(t)=t^2,x(t), singsol=all)$

$$x(t) = \sin(t) c_2 + c_1 \cos(t) + t^2 - 2$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 20

DSolve[x''[t]+x[t]==t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t^2 + c_1 \cos(t) + c_2 \sin(t) - 2$$

9.16 problem 2(d)

Internal problem ID [11477]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 2(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' - 3x' - 4x = 2t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 26

 $dsolve(diff(x(t),t$2)-3*diff(x(t),t)-4*x(t)=2*t^2,x(t), singsol=all)$

$$x(t) = c_2 e^{-t} + e^{4t}c_1 - \frac{t^2}{2} + \frac{3t}{4} - \frac{13}{16}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 37

DSolve[x''[t]-3*x'[t]-4*x[t]==2*t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow -\frac{t^2}{2} + \frac{3t}{4} + c_1 e^{-t} + c_2 e^{4t} - \frac{13}{16}$$

9.17 problem 2(e)

Internal problem ID [11478]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations:

Undetermined Coefficients. Exercises page 110

Problem number: 2(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + x = 9 e^{-t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(x(t),t\$2)+x(t)=9*exp(-t),x(t), singsol=all)

$$x(t) = \sin(t) c_2 + c_1 \cos(t) + \frac{9 e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 25

DSolve[x''[t]+x[t]==9*Exp[-t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{9e^{-t}}{2} + c_1 \cos(t) + c_2 \sin(t)$$

9.18 problem 2(g)

Internal problem ID [11479]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 2(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - 4x = \cos\left(2t\right)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(x(t),t\$2)-4*x(t)=cos(2*t),x(t), singsol=all)

$$x(t) = c_2 e^{-2t} + c_1 e^{2t} - \frac{\cos(2t)}{8}$$

✓ Solution by Mathematica

Time used: 0.115 (sec). Leaf size: 30

DSolve[x''[t]-4*x[t]==Cos[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{1}{8}\cos(2t) + c_1e^{2t} + c_2e^{-2t}$$

9.19 problem 2(h)

Internal problem ID [11480]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations: Undetermined Coefficients. Exercises page 110

Problem number: 2(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x' + 2x = t\sin(2t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 51

dsolve(diff(x(t),t))+diff(x(t),t)+2*x(t)=t*sin(2*t),x(t), singsol=all)

$$x(t) = e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{7}t}{2}\right) c_2 + e^{-\frac{t}{2}} \cos\left(\frac{\sqrt{7}t}{2}\right) c_1 + \frac{(-2t-1)\cos(2t)}{8} - \frac{\sin(2t)(t-2)}{4}$$

✓ Solution by Mathematica

Time used: 0.062 (sec). Leaf size: 72

DSolve[x''[t]+x'[t]+2*x[t]==t*Sin[2*t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -\frac{1}{4}(t-2)\sin(2t) - \frac{1}{8}(2t+1)\cos(2t) + c_2e^{-t/2}\cos\left(\frac{\sqrt{7}t}{2}\right) + c_1e^{-t/2}\sin\left(\frac{\sqrt{7}t}{2}\right)$$

9.20 problem 3

Internal problem ID [11481]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section:}\ {\bf Chapter}\ 2, {\bf Second}\ {\bf order}\ {\bf linear}\ {\bf equations.}\ {\bf Section}\ 2.3.1\ {\bf Nonhomogeneous}\ {\bf Equations:}$

Undetermined Coefficients. Exercises page 110

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - bx' + x = \sin(2t)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.172 (sec). Leaf size: 135

dsolve([diff(x(t),t\$2)-b*diff(x(t),t)+x(t)=sin(2*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all = 0

$$x(t) = \frac{\left(-\sqrt{b^2 - 4}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{-\frac{\left(-b + \sqrt{b^2 - 4}\right)t}{2}} + \left(\sqrt{b^2 - 4}b^2 - b^3 + 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 + 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - 6\sqrt{b^2 - 4} + 4b\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3 - b^2\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^3\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^2\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^2\right)e^{\frac{\left(b + \sqrt{b^2 - 4}\right)t}{2}} + 2\left(\frac{b^2 - 4}{2}b^2 - b^2\right)e^{\frac{\left(b + \sqrt{$$

✓ Solution by Mathematica

Time used: 0.873 (sec). Leaf size: 122

DSolve[{x''[t]-b*x'[t]+x[t]==Sin[2*t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions ->

$$x(t) \rightarrow \frac{e^{\frac{1}{2}\left(b - \sqrt{b^2 - 4}\right)t}\left(b^2\left(e^{\sqrt{b^2 - 4}t} - 1\right) - \sqrt{b^2 - 4}b\left(e^{\sqrt{b^2 - 4}t} + 1\right) + 6e^{\sqrt{b^2 - 4}t} - 6\right)}{\sqrt{b^2 - 4}} + 2b\cos(2t) - 3\sin(2t)$$

9.21 problem 4

Internal problem ID [11482]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations:

Undetermined Coefficients. Exercises page 110

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' - 3x' - 40x = 2e^{-t}$$

With initial conditions

$$[x(0) = 0, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

$$x(t) = -\frac{(-22e^{13t} + 13e^{4t} + 9)e^{-5t}}{234}$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 30

$$x(t) \to \frac{1}{234}e^{-5t}(-13e^{4t} + 22e^{13t} - 9)$$

9.22 problem 5

Internal problem ID [11483]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations:

Undetermined Coefficients. Exercises page 110

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2x' = 4$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

dsolve([diff(x(t),t\$2)-2*diff(x(t),t)=4,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = e^{2t} - 2t$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 14

 $DSolve[\{x''[t]-2*x'[t]==4,\{x[0]==1,x'[0]==0\}\},x[t],t,IncludeSingularSolutions] \rightarrow True]$

$$x(t) \to e^{2t} - 2t$$

9.23 problem 6

Internal problem ID [11484]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.1 Nonhomogeneous Equations:

Undetermined Coefficients. Exercises page 110

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 2x = \cos\left(\sqrt{2}\,t\right)$$

With initial conditions

$$[x(0) = 0, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(x(t),t\$2)+2*x(t)=cos(sqrt(2)*t),x(0) = 0, D(x)(0) = 1],x(t), singsol=all)

$$x(t) = \frac{\sin(\sqrt{2}t)\sqrt{2}(t+2)}{4}$$

✓ Solution by Mathematica

Time used: 0.264 (sec). Leaf size: 25

DSolve[{x''[t]+2*x[t]==Cos[Sqrt[2]*t],{x[0]==0,x'[0]==1}},x[t],t,IncludeSingularSolutions ->

$$x(t) o \frac{(t+2)\sin\left(\sqrt{2}t\right)}{2\sqrt{2}}$$

10	Chapte Section		•											•	•					4	•	
10.1	problem 6	,																				148
10.2	problem 7(a)																					149
10.3	problem 7(c)																					150

10.1 problem 6

Internal problem ID [11485]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}$: Chapter 2, Second order linear equations. Section 2.3.2 Resonance Exercises page

114

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \frac{x'}{100} + 4x = \cos(2t)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.046 (sec). Leaf size: $27\,$

$$x(t) = -\frac{20000 \,\mathrm{e}^{-\frac{t}{200}} \sqrt{159999} \,\sin\left(\frac{\sqrt{159999} \,t}{200}\right)}{159999} + 50 \sin\left(2t\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[{x''[t]+1/100**x'[t]+4*x[t]==Cos[2*t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolut

Not solved

10.2 problem 7(a)

Internal problem ID [11486]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.3.2 Resonance Exercises page

114

Problem number: 7(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + w^2 x = \cos\left(\beta t\right)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 27

 $dsolve([diff(x(t),t$2)+w^2*x(t)=cos(beta*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)$

$$x(t) = \frac{\cos(tw) - \cos(\beta t)}{\beta^2 - w^2}$$

✓ Solution by Mathematica

Time used: 0.367 (sec). Leaf size: 28

$$x(t) o \frac{\cos(\beta t) - \cos(tw)}{w^2 - \beta^2}$$

10.3 problem 7(c)

Internal problem ID [11487]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}$: Chapter 2, Second order linear equations. Section 2.3.2 Resonance Exercises page

114

Problem number: 7(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 3025x = \cos(45t)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 17

 $dsolve([diff(x(t),t$2)+(55)^2*x(t)=cos(45*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)$

$$x(t) = -\frac{\cos(55t)}{1000} + \frac{\cos(45t)}{1000}$$

✓ Solution by Mathematica

Time used: 0.338 (sec). Leaf size: 36

DSolve[{x''[t]+55^2*x[t]==Cos[45*t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions -> T

$$x(t) \to \frac{1}{250} \sin^2(5t)(\cos(5t) + \cos(15t) + \cos(25t) + \cos(35t) + \cos(45t))$$

11 Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations. Exercises page 120

11.1	problem	1(a)																	152
11.2	${\bf problem}$	1(b)																	153
11.3	${\bf problem}$	1(c)																	154
11.4	${\bf problem}$	1(d)									•								155
11.5	${\bf problem}$	1(e)																	156
11.6	${\bf problem}$	1(f).									•								157
11.7	${\bf problem}$	1(g)																	158
11.8	${\bf problem}$	1(h)																	159
11.9	problem	2													_				160

11.1 problem 1(a)

Internal problem ID [11488]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x'' + \frac{x}{t^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

 $dsolve(diff(x(t),t$2)=-1/t^2*x(t),x(t), singsol=all)$

$$x(t) = c_1 \sqrt{t} \sin\left(\frac{\sqrt{3} \ln(t)}{2}\right) + c_2 \cos\left(\frac{\sqrt{3} \ln(t)}{2}\right) \sqrt{t}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 42

DSolve[x''[t]==-1/t^2*x[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \sqrt{t} \left(c_1 \cos \left(\frac{1}{2} \sqrt{3} \log(t) \right) + c_2 \sin \left(\frac{1}{2} \sqrt{3} \log(t) \right) \right)$$

11.2 problem 1(b)

Internal problem ID [11489]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$x'' - \frac{4x}{t^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(diff(x(t),t$2)=4/t^2*x(t),x(t), singsol=all)$

$$x(t) = c_1 t^{\frac{1}{2} + \frac{\sqrt{17}}{2}} + c_2 t^{\frac{1}{2} - \frac{\sqrt{17}}{2}}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 34

DSolve[x''[t]==4/t^2*x[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) o t^{\frac{1}{2} - \frac{\sqrt{17}}{2}} \Big(c_2 t^{\sqrt{17}} + c_1 \Big)$$

11.3 problem 1(c)

Internal problem ID [11490]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$t^2x'' + 3x't + x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(t^2*diff(x(t),t)^2)+3*t*diff(x(t),t)+x(t)=0,x(t), singsol=all)$

$$x(t) = \frac{c_1}{t} + \frac{c_2 \ln (t)}{t}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 17

DSolve[t^2*x''[t]+3*t*x'[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{c_2 \log(t) + c_1}{t}$$

11.4 problem 1(d)

Internal problem ID [11491]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$tx'' + 4x' + \frac{2x}{t} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 15

dsolve(t*diff(x(t),t\$2)+4*diff(x(t),t)+2/t*x(t)=0,x(t), singsol=all)

$$x(t) = \frac{c_1}{t} + \frac{c_2}{t^2}$$

✓ Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 16

DSolve[t*x''[t]+4*x'[t]+2/t*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{c_2 t + c_1}{t^2}$$

11.5 problem 1(e)

Internal problem ID [11492]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$t^2x'' - 7x't + 16x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

 $dsolve(t^2*diff(x(t),t^2)-7*t*diff(x(t),t)+16*x(t)=0,x(t), singsol=all)$

$$x(t) = t^4 c_1 + c_2 t^4 \ln(t)$$

✓ Solution by Mathematica

Time used: 0.028 (sec). Leaf size: 18

DSolve[t^2*x''[t]-7*t*x'[t]+16*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t^4 (4c_2 \log(t) + c_1)$$

11.6 problem 1(f)

Internal problem ID [11493]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$t^2x'' + 3x't - 8x = 0$$

With initial conditions

$$[x(1) = 0, x'(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve([t^2*diff(x(t),t)^2)+3*t*diff(x(t),t)-8*x(t)=0,x(1)=0,D(x)(1)=2],x(t), singsol=al(x,t)+al(x,t$

$$x(t) = \frac{t^6 - 1}{3t^4}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 17

DSolve[{t^2*x''[t]+3*t*x'[t]-8*x[t]==0,{x[1]==0,x'[1]==2}},x[t],t,IncludeSingularSolutions -

$$x(t) \to \frac{t^6 - 1}{3t^4}$$

11.7 problem 1(g)

Internal problem ID [11494]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$t^2x'' + x't = 0$$

With initial conditions

$$[x(1) = 0, x'(1) = 2]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 8

 $dsolve([t^2*diff(x(t),t^2)+t*diff(x(t),t)=0,x(1)=0,D(x)(1)=2],x(t),singsol=all)$

$$x(t) = 2\ln(t)$$

✓ Solution by Mathematica

Time used: 0.038 (sec). Leaf size: 9

$$x(t) \to 2\log(t)$$

11.8 problem 1(h)

Internal problem ID [11495]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 1(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$t^2x'' - x't + 2x = 0$$

With initial conditions

$$[x(1) = 0, x'(1) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 9

$$x(t) = t \sin\left(\ln\left(t\right)\right)$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 10

DSolve[{t^2*x''[t]-t*x'[t]+2*x[t]==0,{x[1]==0,x'[1]==1}},x[t],t,IncludeSingularSolutions ->

$$x(t) \to t \sin(\log(t))$$

11.9 problem 2

Internal problem ID [11496]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.1 Cauchy-Euler equations.

Exercises page 120

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' + t^2 x' = 0$$

With initial conditions

$$[x(0) = 0, x'(0) = 1]$$

✓ Solution by Maple

Time used: 2.625 (sec). Leaf size: 65

 $dsolve([diff(x(t),t$2)+t^2*diff(x(t),t)=0,x(0) = 0, D(x)(0) = 1],x(t), singsol=all)$

$$x(t) = \frac{e^{-\frac{t^3}{3}}\sqrt{t}\left(4\,3^{\frac{5}{6}}(t^3)^{\frac{1}{6}} + 9\,\text{WhittakerM}\left(\frac{1}{6},\frac{2}{3},\frac{t^3}{3}\right)e^{\frac{t^3}{6}}\right)3^{\frac{1}{6}}\left(\begin{cases} -\frac{1}{i\sqrt{3}-1} & t < 0\\ \frac{1}{2} & 0 \le t \end{cases}\right)}{6}$$

✓ Solution by Mathematica

Time used: 0.153 (sec). Leaf size: 43

 $DSolve[\{x''[t]+t^2*x'[t]==0,\{x[0]==0,x'[0]==1\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t)
ightarrow rac{t^2 \operatorname{Gamma}\left(rac{1}{3}
ight) - \left(t^3
ight)^{2/3} \Gamma\left(rac{1}{3}, rac{t^3}{3}
ight)}{3^{2/3} t^2}$$

12 Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters. Exercises page 124

12.1	problem	1(a))										 •							162
12.2	problem	1(b))																	163
12.3	problem	1(c))																	164
12.4	$\operatorname{problem}$	1(d))																	165
12.5	$\operatorname{problem}$	1(e))																	166
12.6	$\operatorname{problem}$	1(f)																		167
12.7	$\operatorname{problem}$	2 .										•								168
12.8	$\operatorname{problem}$	3 .																		169
12.9	problem	7 .																		170

12.1 problem 1(a)

Internal problem ID [11497]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 1(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x = \tan(t)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(x(t),t\$2)+x(t)=tan(t),x(t), singsol=all)

$$x(t) = \sin(t) c_2 + c_1 \cos(t) - \cos(t) \ln(\sec(t) + \tan(t))$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 23

DSolve[x''[t]+x[t]==Tan[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \cos(t)(-\arctan(\sin(t))) + c_1\cos(t) + c_2\sin(t)$$

12.2 problem 1(b)

Internal problem ID [11498]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 1(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - x = t e^t$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(x(t),t\$2)-x(t)=t*exp(t),x(t), singsol=all)

$$x(t) = c_2 e^{-t} + c_1 e^t + \frac{(t-1)e^t t}{4}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 35

DSolve[x''[t]-x[t]==t*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{8}e^t(2t^2 - 2t + 1 + 8c_1) + c_2e^{-t}$$

12.3 problem 1(c)

Internal problem ID [11499]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section:}\ {\bf Chapter}\ 2,\ {\bf Second}\ {\bf order}\ {\bf linear}\ {\bf equations.}\ {\bf Section}\ 2.4.2\ {\bf Variation}\ {\bf of}\ {\bf parameters.}$

Exercises page 124

Problem number: 1(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - x = \frac{1}{t}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

dsolve(diff(x(t),t\$2)-x(t)=1/t,x(t), singsol=all)

$$x(t) = c_2 e^{-t} + c_1 e^t + \frac{\operatorname{Ei}_1(-t) e^{-t}}{2} - \frac{\operatorname{Ei}_1(t) e^t}{2}$$

✓ Solution by Mathematica

Time used: 0.045 (sec). Leaf size: 42

DSolve[x''[t]-x[t]==1/t,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-t}\left(e^{2t}\operatorname{ExpIntegralEi}(-t) - \operatorname{ExpIntegralEi}(t) + 2\left(c_1e^{2t} + c_2\right)\right)$$

12.4 problem 1(d)

Internal problem ID [11500]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 1(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$t^2x'' - 2x = t^3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

 $dsolve(t^2*diff(x(t),t^2)-2*x(t)=t^3,x(t), singsol=all)$

$$x(t) = c_2 t^2 + \frac{t^3}{4} + \frac{c_1}{t}$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 25

DSolve[t^2*x''[t]-2*x[t]==t^3,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{t^3}{4} + c_2 t^2 + rac{c_1}{t}$$

12.5 problem 1(e)

Internal problem ID [11501]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 1(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x = \frac{1}{t+1}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

dsolve(diff(x(t),t\$2)+x(t)=1/(1+t),x(t), singsol=all)

$$x(t) = \sin(t) c_2 + c_1 \cos(t) - \text{Si}(t+1) \cos(t+1) + \text{Ci}(t+1) \sin(t+1)$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 35

DSolve[x''[t]+x[t]==1/(1+t),x[t],t,IncludeSingularSolutions -> True]

 $x(t) \rightarrow \text{CosIntegral}(t+1)\sin(t+1) - \text{Si}(t+1)\cos(t+1) + c_1\cos(t) + c_2\sin(t)$

12.6 problem 1(f)

Internal problem ID [11502]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 1(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - 2x' + x = \frac{e^t}{2t}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(x(t),t\$2)-2*diff(x(t),t)+x(t)=1/(2*t)*exp(t),x(t), singsol=all)

$$x(t) = c_2 e^t + e^t t c_1 + \frac{e^t t (-1 + \ln(t))}{2}$$

✓ Solution by Mathematica

Time used: 0.036 (sec). Leaf size: 29

DSolve[x''[t]-2*x'[t]+x[t]==1/(2*t)*Exp[t],x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{t}(t\log(t) + (-1 + 2c_2)t + 2c_1)$$

12.7 problem 2

Internal problem ID [11503]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_y]]

$$x'' + \frac{x'}{t} = a$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(x(t),t\$2)+1/t*diff(x(t),t)=a,x(t), singsol=all)

$$x(t) = \frac{t^2 a}{4} + \ln(t) c_1 + c_2$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 21

DSolve[x''[t]+1/t*x'[t]==a,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{at^2}{4} + c_1 \log(t) + c_2$$

12.8 problem 3

Internal problem ID [11504]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$t^2x'' - 3x't + 3x = 4t^7$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(t^2*diff(x(t),t)^2)-3*t*diff(x(t),t)+3*x(t)=4*t^7,x(t), singsol=all)$

$$x(t) = \left(\frac{1}{6}t^6 + \frac{1}{2}c_1t^2 + c_2\right)t$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 23

DSolve[t^2*x''[t]-3*t*x'[t]+3*x[t]==4*t^7,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o rac{t^7}{6} + c_2 t^3 + c_1 t$$

12.9 problem 7

Internal problem ID [11505]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.2 Variation of parameters.

Exercises page 124

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - x = \frac{e^t}{1 + e^t}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

dsolve(diff(x(t),t\$2)-x(t)=exp(t)/(1+exp(t)),x(t), singsol=all)

$$x(t) = c_2 e^{-t} + c_1 e^t + \frac{(-e^t + e^{-t}) \ln (1 + e^t)}{2} + \frac{e^t \ln (e^t)}{2} - \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.123 (sec). Leaf size: 51

DSolve[x''[t]-x[t]==Exp[t]/(1+Exp[t]),x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -e^t \operatorname{arctanh}(2e^t + 1) + \frac{1}{2}e^{-t}\log(e^t + 1) + c_1e^t + c_2e^{-t} - \frac{1}{2}$$

13 Chapter 2, Second order linear equations. Section 2.4.3 Reduction of order. Exercises page 125

13.1	$\operatorname{problem}$	1																			172
13.2	$\operatorname{problem}$	2																			173
13.3	$\operatorname{problem}$	4																			174
13.4	$\operatorname{problem}$	5																			175
13.5	problem	6																			176

13.1 problem 1

Internal problem ID [11506]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.3 Reduction of order. Exercises page 125

Problem number: 1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _homogeneous]]

$$x'' + x't + x = 0$$

Given that one solution of the ode is

$$x_1 = \mathrm{e}^{-\frac{t^2}{2}}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $\label{eq:decomposition} \\ \mbox{dsolve([diff(x(t),t)+t*diff(x(t),t)+x(t)=0,exp(-t^2/2)],x(t), singsol=all)} \\ \$

$$x(t) = \operatorname{erf}\left(rac{i\sqrt{2}\,t}{2}
ight) \operatorname{e}^{-rac{t^2}{2}} c_1 + c_2 \operatorname{e}^{-rac{t^2}{2}}$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 41

DSolve[x''[t]+t*x'[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o \frac{1}{2} e^{-\frac{t^2}{2}} \left(\sqrt{2\pi} c_1 \operatorname{erfi}\left(\frac{t}{\sqrt{2}}\right) + 2c_2 \right)$$

13.2 problem 2

Internal problem ID [11507]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.3 Reduction of order. Exercises page 125

Problem number: 2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Hermite]

$$x'' - x't + x = 0$$

Given that one solution of the ode is

$$x_1 = t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: $38\,$

 $dsolve([diff(x(t),t)^2)-t*diff(x(t),t)+x(t)=0,t],x(t), singsol=all)$

$$x(t) = c_1 t + c_2 \left(i \sqrt{2} \sqrt{\pi} e^{\frac{t^2}{2}} - \pi \operatorname{erf} \left(\frac{i \sqrt{2} t}{2} \right) t \right)$$

✓ Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 61

DSolve[x''[t]-t*x'[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) o -\sqrt{\frac{\pi}{2}}c_2\sqrt{t^2} \mathrm{erfi}\left(\frac{\sqrt{t^2}}{\sqrt{2}}\right) + c_2 e^{\frac{t^2}{2}} + \sqrt{2}c_1 t$$

13.3 problem 4

Internal problem ID [11508]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.3 Reduction of order. Exercises page 125

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2ax' + a^2x = 0$$

Given that one solution of the ode is

$$x_1 = e^{at}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve([diff(x(t),t\$2)-2*a*diff(x(t),t)+a^2*x(t)=0,exp(a*t)],x(t), singsol=all)$

$$x(t) = e^{at}c_1 + c_2e^{at}t$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 18

DSolve[x''[t]-2*a*x'[t]+a^2*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow e^{at}(c_2t + c_1)$$

13.4 problem 5

Internal problem ID [11509]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.4.3 Reduction of order. Exer-

cises page 125

Problem number: 5.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' - \frac{(t+2)x'}{t} + \frac{(t+2)x}{t^2} = 0$$

Given that one solution of the ode is

$$x_1 = t$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 13

 $dsolve([diff(x(t),t$2)-(t+2)/t*diff(x(t),t)+(t+2)/t^2*x(t)=0,t],x(t), singsol=all)$

$$x(t) = c_1 t + c_2 e^t t$$

✓ Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 16

 $\overline{DSolve[x''[t]-(t+2)/t*x'[t]+(t+2)/t^2*x[t]==0,x[t],t,IncludeSingularSolutions} \rightarrow True]$

$$x(t) \rightarrow t(c_2 e^t + c_1)$$

13.5 problem 6

Internal problem ID [11510]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}\colon {f Chapter}\ 2,\ {f Second}\ {f order}\ {f linear}\ {f equations}.$ Section 2.4.3 Reduction of order. Exer-

cises page 125

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$\left| \begin{array}{l} t^2x'' + x't + \left(t^2 - \frac{1}{4}\right)x = 0 \end{array} \right|$$

Given that one solution of the ode is

$$x_1 = \frac{\cos(t)}{\sqrt{t}}$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 19

 $dsolve([t^2*diff(x(t),t\$2)+t*diff(x(t),t)+(t^2-1/4)*x(t)=0,cos(t)/sqrt(t)],x(t), singsol=all (t) = (t) + ($

$$x(t) = \frac{c_1 \sin(t)}{\sqrt{t}} + \frac{c_2 \cos(t)}{\sqrt{t}}$$

✓ Solution by Mathematica

Time used: 0.052 (sec). Leaf size: 39

 $DSolve[t^2*x''[t]+t*x'[t]+(t^2-1/4)*x[t]==0,x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{e^{-it}(2c_1 - ic_2e^{2it})}{2\sqrt{t}}$$

14 Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130

14.1	problem	1(a)																	•	178
14.2	$\operatorname{problem}$	1(b)																		179
14.3	problem	1(c)																		180
14.4	$\operatorname{problem}$	1(d)																		181
14.5	$\operatorname{problem}$	1(e)																		183
14.6	$\operatorname{problem}$	1(f).																		184
14.7	problem	2																		185

14.1 problem 1(a)

Internal problem ID [11511]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130

Problem number: 1(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' + x' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(diff(x(t),t\$3)+diff(x(t),t)=0,x(t), singsol=all)

$$x(t) = c_1 + \sin(t) c_2 + c_3 \cos(t)$$

✓ Solution by Mathematica

Time used: 0.061 (sec). Leaf size: 19

DSolve[x'''[t]+x'[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to -c_2 \cos(t) + c_1 \sin(t) + c_3$$

14.2 problem 1(b)

Internal problem ID [11512]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Ex-

ercises page 130

Problem number: 1(b).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' + x' = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(x(t),t\$3)+diff(x(t),t)=1,x(t), singsol=all)

$$x(t) = c_1 \sin(t) - c_2 \cos(t) + t + c_3$$

✓ Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 20

DSolve[x'''[t]+x'[t]==1,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to t - c_2 \cos(t) + c_1 \sin(t) + c_3$$

14.3 problem 1(c)

Internal problem ID [11513]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Ex-

ercises page 130 **Problem number**: 1(c).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' + x'' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

dsolve(diff(x(t),t\$3)+diff(x(t),t\$2)=0,x(t), singsol=all)

$$x(t) = c_1 + tc_2 + c_3 e^{-t}$$

✓ Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 20

DSolve[x'''[t]+x''[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{-t} + c_3 t + c_2$$

14.4 problem 1(d)

Internal problem ID [11514]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130

Problem number: 1(d).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' - x' - 8x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 150

 $dsolve(diff(x(t),t)^3)-diff(x(t),t)^8*x(t)=0,x(t), singsol=all)$

$$x(t) = c_{1}e^{\frac{\left(\left(108+3\sqrt{1293}\right)^{\frac{2}{3}}+3\right)t}{3\left(108+3\sqrt{1293}\right)^{\frac{1}{3}}}}$$

$$-c_{2}e^{\frac{\left(-\frac{\left(108+3\sqrt{1293}\right)^{\frac{2}{3}}}{6}-\frac{1}{2}\right)t}{\left(108+3\sqrt{1293}\right)^{\frac{1}{3}}}}\sin\left(\frac{\left(\left(108+3\sqrt{1293}\right)^{\frac{2}{3}}\sqrt{3}-3\sqrt{3}\right)t}{6\left(108+3\sqrt{1293}\right)^{\frac{1}{3}}}\right)$$

$$+c_{3}e^{\frac{\left(-\frac{\left(108+3\sqrt{1293}\right)^{\frac{2}{3}}}{6}-\frac{1}{2}\right)t}{\left(108+3\sqrt{1293}\right)^{\frac{1}{3}}}}\cos\left(\frac{\left(\left(108+3\sqrt{1293}\right)^{\frac{2}{3}}\sqrt{3}-3\sqrt{3}\right)t}{6\left(108+3\sqrt{1293}\right)^{\frac{1}{3}}}\right)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 69

DSolve[x'''[t]-x'[t]-8*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to c_2 \exp \left(t \text{Root} \left[\# 1^3 - \# 1 - 8 \&, 2 \right] \right) + c_3 \exp \left(t \text{Root} \left[\# 1^3 - \# 1 - 8 \&, 3 \right] \right) + c_1 \exp \left(t \text{Root} \left[\# 1^3 - \# 1 - 8 \&, 1 \right] \right)$$

14.5 problem 1(e)

Internal problem ID [11515]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130

Problem number: 1(e).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$x''' + x'' = 2e^t + 3t^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

 $dsolve(diff(x(t),t\$3)+diff(x(t),t\$2)=2*exp(t)+3*t^2,x(t), singsol=all)$

$$x(t) = \frac{t^4}{4} + 3t^2 - t^3 + e^{-t}c_1 + e^t + tc_2 + c_3$$

✓ Solution by Mathematica

Time used: 0.308 (sec). Leaf size: 40

DSolve[x'''[t]+x''[t]==2*Exp[t]+3*t^2,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{t^4}{4} - t^3 + 3t^2 + e^t + c_3 t + c_1 e^{-t} + c_2$$

14.6 problem 1(f)

Internal problem ID [11516]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130

Problem number: 1(f).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' - 8x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(x(t),t\$3)-8*x(t)=0,x(t), singsol=all)

$$x(t) = c_1 e^{2t} + c_2 e^{-t} \sin\left(\sqrt{3}t\right) + c_3 e^{-t} \cos\left(\sqrt{3}t\right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 52

DSolve[x'''[t]-x[t]==0,x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-t/2} \left(c_1 e^{3t/2} + c_2 \cos\left(\frac{\sqrt{3}t}{2}\right) + c_3 \sin\left(\frac{\sqrt{3}t}{2}\right) \right)$$

14.7 problem 2

Internal problem ID [11517]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${f Section}$: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130

Problem number: 2.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$x''' + x'' - x' - 4x = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0, x''(0) = -1]$$

✓ Solution by Maple

Time used: 0.516 (sec). Leaf size: 296

x(t)

$$-\frac{\left(\left(32\sqrt{113}+352\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+\left(-\sqrt{113}-25\right)\left(388+36\sqrt{113}\right)^{\frac{2}{3}}+776\sqrt{113}+8136\right)\cos\left(-\sqrt{113}+352\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+\left(-\sqrt{113}-25\right)\left(388+36\sqrt{113}\right)^{\frac{2}{3}}+776\sqrt{113}+8136\right)\cos\left(-\sqrt{113}+352\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+\left(-\sqrt{113}-25\right)\left(388+36\sqrt{113}\right)^{\frac{2}{3}}+776\sqrt{113}+8136\right)\cos\left(-\sqrt{113}+352\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+\left(-\sqrt{113}-25\right)\left(388+36\sqrt{113}\right)^{\frac{2}{3}}+776\sqrt{113}+8136\right)\cos\left(-\sqrt{113}+352\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+\left(-\sqrt{113}-25\right)\left(388+36\sqrt{113}\right)^{\frac{2}{3}}+776\sqrt{113}+8136\right)\cos\left(-\sqrt{113}+352\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+\left(-\sqrt{113}-25\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+776\sqrt{113}+8136\right)\cos\left(-\sqrt{113}+352\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+\left(-\sqrt{113}-25\right)\left(388+36\sqrt{113}\right)^{\frac{1}{3}}+776\sqrt{113}+8136\right)\cos\left(-\sqrt{113}+352\right)$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 748

$$x(t) \to \frac{\text{Root}[\#1^3 + \#1^2 - \#1 - 4\&, 1] \exp(t\text{Root}[\#1^3 + \#1^2 - \#1 - 4\&, 2]) - \text{Root}[\#1^3 + \#1^2 - \#1 - 4\&, 2])}{\text{Root}[\#1^3 + \#1^2 - \#1 - 4\&, 2])}$$

15 Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156

15.1	problem	6(a)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	188
15.2	problem	6(b))																															189
15.3	problem	6(c)																																190
15.4	problem	6(d))																															191
15.5	problem	6(e)																																192
15.6	problem	6(f)																																193
15.7	problem	6(g))																															194
15.8	problem	6(h))																															195
15.9	problem	6(i)																																196
15.10)problem	6(j)																																197
15.11	lproblem	11																																198
15.12	2problem	12																																199
15.13	Bproblem	14																																200
15.14	1problem	15		_																														201

15.1 problem 6(a)

Internal problem ID [11518]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section}\colon$ Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156

Problem number: 6(a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + 5x = \text{Heaviside}(-2 + t)$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([diff(x(t),t)+5*x(t)=Heaviside(t-2),x(0) = 1],x(t), singsol=all)

$$x(t) = \frac{\text{Heaviside}(t-2)}{5} - \frac{\text{Heaviside}(t-2)e^{-5t+10}}{5} + e^{-5t}$$

✓ Solution by Mathematica

Time used: 0.093 (sec). Leaf size: 37

DSolve[{x'[t]+5*x[t]==UnitStep[t-2],{x[0]==1}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \{ e^{-5t} & t \le 2 \\ \frac{1}{5}e^{-5t}(5 - e^{10} + e^{5t}) & \text{True}$$

15.2 problem 6(b)

Internal problem ID [11519]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section}\colon$ Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156

Problem number: 6(b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + x = \sin(2t)$$

With initial conditions

$$[x(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(x(t),t)+x(t)=sin(2*t),x(0) = 0],x(t), singsol=all)

$$x(t) = -\frac{2\cos(2t)}{5} + \frac{\sin(2t)}{5} + \frac{2e^{-t}}{5}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 27

 $DSolve[{x'[t]+x[t]==Sin[2*t], {x[0]==0}}, x[t], t, IncludeSingularSolutions -> True}]$

$$x(t) \to \frac{1}{5} (2e^{-t} + \sin(2t) - 2\cos(2t))$$

15.3 problem 6(c)

Internal problem ID [11520]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 6(c).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - x' - 6x = 0$$

With initial conditions

$$[x(0) = 2, x'(0) = -1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 18

dsolve([diff(x(t),t\$2)-diff(x(t),t)-6*x(t)=0,x(0) = 2, D(x)(0) = -1],x(t), singsol=all)

$$x(t) = \frac{(3e^{5t} + 7)e^{-2t}}{5}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 23

$$x(t) \to \frac{1}{5}e^{-2t} (3e^{5t} + 7)$$

15.4 problem 6(d)

Internal problem ID [11521]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 6(d).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2x' + 2x = 0$$

With initial conditions

$$[x(0) = 0, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 9

dsolve([diff(x(t),t\$2)-2*diff(x(t),t)+2*x(t)=0,x(0) = 0, D(x)(0) = 1],x(t), singsol=all)

$$x(t) = e^t \sin(t)$$

✓ Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 11

$$x(t) \to e^t \sin(t)$$

15.5 problem 6(e)

Internal problem ID [11522]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156 **Problem number**: 6(e).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' - 2x' + 2x = e^{-t}$$

With initial conditions

$$[x(0) = 0, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(x(t),t\$2)-2*diff(x(t),t)+2*x(t)=exp(-t),x(0) = 0, D(x)(0) = 1],x(t), singsol=al(x,t)+al

$$x(t) = \frac{e^{-t}}{5} + \frac{(-\cos(t) + 7\sin(t))e^{t}}{5}$$

✓ Solution by Mathematica

Time used: 0.108 (sec). Leaf size: 29

DSolve[{x''[t]-2*x'[t]+2*x[t]==Exp[-t],{x[0]==0,x'[0]==1}},x[t],t,IncludeSingularSolutions -

$$x(t) \to \frac{1}{5} (e^{-t} + 7e^t \sin(t) - e^t \cos(t))$$

15.6 problem 6(f)

Internal problem ID [11523]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 6(f).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - x' = 0$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 5

dsolve([diff(x(t),t\$2)-diff(x(t),t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = 1$$

✓ Solution by Mathematica

Time used: 0.016 (sec). Leaf size: 6

 $\textbf{DSolve}[\{x''[t]-x'[t]==0,\{x[0]==1,x'[0]==0\}\},x[t],t,IncludeSingularSolutions} \rightarrow \textbf{True}]$

$$x(t) \rightarrow 1$$

15.7 problem 6(g)

Internal problem ID [11524]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156

Problem number: 6(g).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \frac{2x'}{5} + 2x = 1 - \text{Heaviside}(t-5)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 58

dsolve([diff(x(t),t\$2)+4/10*diff(x(t),t)+2*x(t)=1-Heaviside(t-5),x(0) = 0, D(x)(0) = 0],x(t)

$$x(t) = \frac{\text{Heaviside}(t-5) e^{-\frac{t}{5}+1} \left(\frac{\sin(-7+\frac{7t}{5})}{7} + \cos\left(-7+\frac{7t}{5}\right)\right)}{2} + \frac{\left(-7\cos\left(\frac{7t}{5}\right) - \sin\left(\frac{7t}{5}\right)\right) e^{-\frac{t}{5}}}{14} - \frac{\text{Heaviside}(t-5)}{2} + \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.07 (sec). Leaf size: 91

 $x(t) \rightarrow -\frac{1}{14}e^{-t/5}\left(-\theta(5-t)\left(7e^{t/5} + e\sin\left(7 - \frac{7t}{5}\right) - 7e\cos\left(7 - \frac{7t}{5}\right)\right) + e\sin\left(7 - \frac{7t}{5}\right) + \sin\left(\frac{7t}{5}\right) - 7e\cos\left(7 - \frac{7t}{5}\right)\right) + e\sin\left(7 - \frac{7t}{5}\right) + \sin\left(\frac{7t}{5}\right) - 7e\cos\left(7 - \frac{7t}{5}\right) + \sin\left(\frac{7t}{5}\right) - 7e\cos\left(7 - \frac{7t}{5}\right) + \sin\left(\frac{7t}{5}\right) - 7e\cos\left(7 - \frac{7t}{5}\right) + \sin\left(\frac{7t}{5}\right) + \sin\left(\frac{7t}{5}\right) - 7e\cos\left(\frac{7t}{5}\right) + \sin\left(\frac{7t}{5}\right) + \sin\left(\frac{7t}{5}$

15.8 problem 6(h)

Internal problem ID [11525]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${f Section}$: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 6(h).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 9x = \sin(3t)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(x(t),t\$2)+9*x(t)=sin(3*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \frac{\sin(3t)}{18} - \frac{\cos(3t)t}{6}$$

✓ Solution by Mathematica

Time used: 0.14 (sec). Leaf size: 21

DSolve[{x''[t]+9*x[t]==Sin[3*t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{18}(\sin(3t) - 3t\cos(3t))$$

15.9 problem 6(i)

Internal problem ID [11526]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

 ${\bf Section}\colon$ Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page 156

Problem number: 6(i).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$x'' - 2x = 1$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 23

 $\label{eq:decomposition} dsolve([diff(x(t),t\$2)-2*x(t)=1,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)$

$$x(t) = \frac{3e^{\sqrt{2}t}}{4} + \frac{3e^{-\sqrt{2}t}}{4} - \frac{1}{2}$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 34

 $DSolve[\{x''[t]-2*x[t]==1,\{x[0]==1,x'[0]==0\}\},x[t],t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to \frac{1}{4} \left(3e^{-\sqrt{2}t} + 3e^{\sqrt{2}t} - 2 \right)$$

15.10 problem 6(j)

Internal problem ID [11527]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 6(j).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$-2x + x' = \text{Heaviside}(t-1)$$

With initial conditions

$$[x(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

dsolve([diff(x(t),t)=2*x(t)+Heaviside(t-1),x(0) = 0],x(t), singsol=all)

$$x(t) = \frac{\text{Heaviside}(t-1)(-1+e^{2t-2})}{2}$$

✓ Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 25

DSolve[{x'[t]==2*x[t]+UnitStep[t-1],{x[0]==0}},x[t],t,IncludeSingularSolutions -> True]

$$x(t)
ightarrow \left\{ egin{array}{ccc} rac{1}{2}(-1+e^{2t-2}) & t>1 \\ 0 & {
m True} \end{array}
ight.$$

15.11 problem 11

Internal problem ID [11528]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + 4x - \cos(2t)$$
 Heaviside $(2\pi - t) = 0$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

X Solution by Maple

 $\boxed{ \frac{\text{dsolve}([\text{diff}(x(t),t)+4*x(t)=\cos(2*t)*\text{Heaviside}(2*\text{Pi-t}),x(0)=0,\ D(x)(0)=0]}{\text{,}x(t),\ \text{singsoless}}, x(t), x(t),$

No solution found

✓ Solution by Mathematica

Time used: 0.168 (sec). Leaf size: 28

DSolve[{x''[t]+4*x[t]==Cos[2*t]*UnitStep[2*Pi-t],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularS

$$x(t) \rightarrow \begin{cases} & \pi \cos(t) \sin(t) & t > 2\pi \\ & \frac{1}{2}t \cos(t) \sin(t) & \text{True} \end{cases}$$

15.12 problem 12

Internal problem ID [11529]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$-x + x' = -2$$
 Heaviside $(t-1)$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 20

dsolve([diff(x(t),t)=x(t)-2*Heaviside(t-1),x(0) = 1],x(t), singsol=all)

$$x(t) = (-2e^{t-1} + 2)$$
 Heaviside $(t-1) + e^t$

✓ Solution by Mathematica

Time used: 0.075 (sec). Leaf size: 26

DSolve[{x'[t]==x[t]-2*UnitStep[t-1],{x[0]==1}},x[t],t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow \{ e^t & t \leq 1 \\ 2 - 2e^{t-1} + e^t & \text{True} \}$$

15.13 problem 14

Internal problem ID [11530]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_linear, 'class A']]

$$x' + x = \text{Heaviside}(t-1) - \text{Heaviside}(-2+t)$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 42

dsolve([diff(x(t),t)=-x(t)+Heaviside(t-1)-Heaviside(t-2),x(0) = 1],x(t), singsol=all)

$$\begin{split} x(t) &= \operatorname{Heaviside}\left(t-2\right) \operatorname{e}^{2-t} - \operatorname{Heaviside}\left(t-2\right) \\ &- \operatorname{Heaviside}\left(t-1\right) \operatorname{e}^{1-t} + \operatorname{Heaviside}\left(t-1\right) + \operatorname{e}^{-t} \end{split}$$

✓ Solution by Mathematica

Time used: 0.104 (sec). Leaf size: 48

$$x(t) \rightarrow \begin{array}{ccc} e^{-t} & t \leq 1 \\ \\ x(t) \rightarrow & \{ & e^{-t}(1-e+e^2) & t > 2 \\ \\ & e^{-t}(1-e+e^t) & \text{True} \end{array}$$

15.14 problem 15

Internal problem ID [11531]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.2.1 Initial value problems. Exercises page

156

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \pi^2 x = \pi^2 \text{ Heaviside } (-t+1)$$

With initial conditions

$$[x(0) = 1, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 19

 $dsolve([diff(x(t),t\$2)+Pi^2*x(t)=Pi^2*Heaviside(1-t),x(0)=1,D(x)(0)=0],x(t),singsol=al(x,t)=0$

$$x(t) = 1 + (-\cos(\pi t) - 1)$$
 Heaviside $(t - 1)$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 18

 $DSolve[\{x''[t]+Pi^2*x[t]==Pi^2*UnitStep[1-t],\{x[0]==1,x'[0]==0\}\},x[t],t,IncludeSingularSolut]$

$$x(t) \rightarrow \{ \begin{cases} 1 & t \leq 1 \\ -\cos(\pi t) & \text{True} \end{cases}$$

16	Chapter 3, Laplace transform. Section 3.3 The
	convolution property. Exercises page 162
16.1	problem 7
16.2	problem 8

16.1 problem 7

Internal problem ID [11532]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.3 The convolution property. Exercises page 162

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' - 4x = 1 - \text{Heaviside}(t-1)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 48

dsolve([diff(x(t),t\$2)-4*x(t)=1-Heaviside(t-1),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$\begin{split} x(t) &= \frac{\mathrm{e}^{-2t}}{8} + \frac{\mathrm{e}^{2t}}{8} + \frac{\mathrm{Heaviside}\left(t-1\right)}{4} \\ &- \frac{\mathrm{Heaviside}\left(t-1\right)\mathrm{e}^{-2t+2}}{8} - \frac{1}{4} - \frac{\mathrm{Heaviside}\left(t-1\right)\mathrm{e}^{2t-2}}{8} \end{split}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 54

$$x(t) \to \frac{1}{8} e^{-2(t+1)} \Big(\left(e^2 - e^{2t} \right)^2 \theta(1-t) + \left(e^2 - 1 \right) \left(e^{4t} - e^2 \right) \Big)$$

16.2 problem 8

Internal problem ID [11533]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

 ${\bf Section} \colon$ Chapter 3, Laplace transform. Section 3.3 The convolution property. Exercises page

162

Problem number: 8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$x'' + 3x' + 2x = e^{-4t}$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 22

dsolve([diff(x(t),t\$2)+3*diff(x(t),t)+2*x(t)=exp(-4*t),x(0) = 0, D(x)(0) = 0],x(t), singsol=0

$$x(t) = \frac{(e^{-3t} - 3e^{-t} + 2)e^{-t}}{6}$$

✓ Solution by Mathematica

Time used: 0.053 (sec). Leaf size: 28

$$x(t) \to \frac{1}{6}e^{-4t}(e^t - 1)^2(2e^t + 1)$$

17 Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

17.1	problem 2																			206
17.2	$problem\ 3$																			207
17.3	$problem\ 4$																			208
17.4	$problem\ 6$																			209
17.5	$problem\ 7$																			210
17.6	$problem\ 9$																			211
17.7	problem 10)																		212

17.1 problem 2

Internal problem ID [11534]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

Problem number: 2.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[linear, 'class A']]

$$x' + 3x = \delta(t-1) + \text{Heaviside}(t-4)$$

With initial conditions

$$[x(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

$$dsolve([diff(x(t),t)+3*x(t)=Dirac(t-1)+Heaviside(t-4),x(0) = 1],x(t), singsol=all)$$

$$x(t) = \text{Heaviside}(t-1)e^{-3t+3} + \frac{\text{Heaviside}(t-4)}{3} - \frac{\text{Heaviside}(t-4)e^{-3t+12}}{3} + e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.201 (sec). Leaf size: 53

DSolve[{x'[t]+3*x[t]==DiracDelta[t-1]+UnitStep[t-4],{x[0]==1}},x[t],t,IncludeSingularSolution

$$x(t) \to \frac{1}{3}e^{-3t} \left(3e^3\theta(t-1) + \left(e^{12} - e^{3t}\right)\theta(4-t) + e^{3t} - e^{12} + 3\right)$$

17.2 problem 3

Internal problem ID [11535]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

Problem number: 3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$x'' - x = \delta(t - 5)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 25

dsolve([diff(x(t),t\$2)-x(t)=Dirac(t-5),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = -\frac{\text{Heaviside}(t-5)(-e^{-5+2t}+e^{5})e^{-t}}{2}$$

✓ Solution by Mathematica

Time used: 0.058 (sec). Leaf size: 31

$$x(t) \to \frac{1}{2}e^{-t-5}(e^{2t} - e^{10})\theta(t-5)$$

17.3 problem 4

Internal problem ID [11536]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

Problem number: 4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$x'' + x = \delta(-2 + t)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve([diff(x(t),t\$2)+x(t)=Dirac(t-2),x(0) = 0, D(x)(0) = 0],x(t), singsol=all)

$$x(t) = \text{Heaviside}(t-2)\sin(t-2)$$

✓ Solution by Mathematica

Time used: 0.206 (sec). Leaf size: 17

DSolve[{x''[t]+x[t]==DiracDelta[t-2],{x[0]==0,x'[0]==0}},x[t],t,IncludeSingularSolutions ->

$$x(t) \rightarrow -\theta(t-2)\sin(2-t)$$

17.4 problem 6

Internal problem ID [11537]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

Problem number: 6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 4x = \delta(-2 + t) - (\delta(t - 5))$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

 $\frac{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t), singsol=all}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-2)-Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=Dirac(t-5),x(0)=0,D(x)(0)=0],x(t),singsol=all)}{dsolve([diff(x(t),t\$2)+4*x(t)=0,Dirac(t-5),x(0)=0,D(x)(0$

$$x(t) = -\frac{\text{Heaviside}(t-5)\sin(2t-10)}{2} + \frac{\text{Heaviside}(t-2)\sin(2t-4)}{2}$$

✓ Solution by Mathematica

Time used: 0.128 (sec). Leaf size: 33

 $DSolve[\{x''[t]+4*x[t]==DiracDelta[t-2]-DiracDelta[t-5],\{x[0]==0,x'[0]==0\}\},x[t],t,IncludeSingle for the context of the conte$

$$x(t) \to \frac{1}{2}(\theta(t-5)\sin(10-2t) - \theta(t-2)\sin(4-2t))$$

17.5 problem 7

Internal problem ID [11538]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

Problem number: 7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + x = 3(\delta(-2\pi + t))$$

With initial conditions

$$[x(0) = 0, x'(0) = 1]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

dsolve([diff(x(t),t\$2)+x(t)=3*Dirac(t-2*Pi),x(0) = 0, D(x)(0) = 1],x(t), singsol=all)

$$x(t) = \sin(t) (3 \text{ Heaviside} (-2\pi + t) + 1)$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 18

$$x(t) \rightarrow (3\theta(t-2\pi)+1)\sin(t)$$

17.6 problem 9

Internal problem ID [11539]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

Problem number: 9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + y' + y = \delta(t - 1)$$

With initial conditions

$$[y(0) = 0, y'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $\frac{dsolve([diff(y(t),t\$2)+diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t\$2)+diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t\$2)+diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t\$2)+diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t\$2)+diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t\$2)+diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all}{dsolve([diff(y(t),t)+y(t)=Dirac(t-1),y(0)=0,D(y)(0)=0],y(t),\ singsol=all,\ s$

$$y(t) = \frac{2\sqrt{3} \operatorname{Heaviside}(t-1) e^{\frac{1}{2} - \frac{t}{2}} \sin\left(\frac{\sqrt{3}(t-1)}{2}\right)}{3}$$

✓ Solution by Mathematica

Time used: 0.124 (sec). Leaf size: 40

DSolve[{y''[t]+y'[t]+y[t]==DiracDelta[t-1],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolution

$$y(t) \to \frac{2e^{\frac{1}{2} - \frac{t}{2}}\theta(t-1)\sin(\frac{1}{2}\sqrt{3}(t-1))}{\sqrt{3}}$$

17.7 problem 10

Internal problem ID [11540]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.

Section: Chapter 3, Laplace transform. Section 3.4 Impulsive sources. Exercises page 173

Problem number: 10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + 4x = \frac{(t-5)\operatorname{Heaviside}(t-5)}{5} + \left(2 - \frac{t}{5}\right)\operatorname{Heaviside}(t-10)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

dsolve([diff(x(t),t\$2)+4*x(t)=1/5*(t-5)*Heaviside(t-5)+(1-1/5*(t-5))*Heaviside(t-10),x(0) = 0

$$x(t) = \frac{\text{Heaviside}\left(t - 10\right)\sin\left(2t - 20\right)}{40} - \frac{\text{Heaviside}\left(t - 5\right)\sin\left(2t - 10\right)}{40} + \frac{\left(-2t + 20\right)\text{Heaviside}\left(t - 10\right)}{40} + \frac{\left(t - 5\right)\text{Heaviside}\left(t - 5\right)}{20}$$

✓ Solution by Mathematica

Time used: 0.085 (sec). Leaf size: 55

DSolve[{x''[t]+4*x[t]==1/5*(t-5)*UnitStep[t-5]+(1-1/5*(t-5))*UnitStep[t-10],{x[0]==0,x'[0]==0

$$x(t) \rightarrow \begin{cases} \frac{\frac{1}{40}(2(t-5) + \sin(10-2t))}{\frac{1}{40}(\sin(10-2t) - \sin(20-2t) + 10)} & 5 < t \le 10 \\ \frac{1}{40}(\sin(10-2t) - \sin(20-2t) + 10) & t > 10 \end{cases}$$

18	\mathbf{Chapte}	r	4	1,	L	ij	n	ea	a!	r	33	75	st	e	n	n	S	•	E	צנ	ζ(er	.C	i	S	98	3	r	3(Į	3 (e	•	19	90
18.1	problem 2(a)																																•		214
18.2	problem 2(b)																																		215
18.3	problem 2(c)																																		216
18.4	problem 2(d)																																		218
18.5	problem 3(a)																																		220
18.6	problem 3(b)																																		22
18.7	problem 3(c)																																		222
18.8	problem 3(d)																																		223

18.1 problem 2(a)

Internal problem ID [11541]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -3y(t)$$
$$y'(t) = 2x$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 48

dsolve([diff(x(t),t)=-3*y(t),diff(y(t),t)=2*x(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{\sqrt{6} \left(\cos \left(\sqrt{6} t\right) c_1 - \sin \left(\sqrt{6} t\right) c_2\right)}{2}$$

$$y(t) = c_1 \sin\left(\sqrt{6}t\right) + c_2 \cos\left(\sqrt{6}t\right)$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 69

 $DSolve[\{x'[t]==-3*y[t],y'[t]==2*x[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow True]$

$$x(t) \to c_1 \cos\left(\sqrt{6}t\right) - \sqrt{\frac{3}{2}}c_2 \sin\left(\sqrt{6}t\right)$$

$$y(t) \to c_2 \cos\left(\sqrt{6}t\right) + \sqrt{\frac{2}{3}}c_1 \sin\left(\sqrt{6}t\right)$$

18.2 problem 2(b)

Internal problem ID [11542]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 2(b).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -2y(t)$$
$$y'(t) = -4x$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 52

 $dsolve([diff(x(t),t)=-2*y(t),diff(y(t),t)=-4*x(t)],[x(t),y(t)], \ singsol=all)$

$$x(t) = -\frac{\sqrt{2}\left(c_1 e^{2\sqrt{2}t} - c_2 e^{-2\sqrt{2}t}\right)}{2}$$

$$y(t) = c_1 e^{2\sqrt{2}t} + c_2 e^{-2\sqrt{2}t}$$

✓ Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 111

 $DSolve[\{x'[t]==-2*y[t],y'[t]==-4*x[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \ \ \, \rightarrow \ \, True]$

$$x(t) \to \frac{1}{4}e^{-2\sqrt{2}t} \Big(2c_1 \Big(e^{4\sqrt{2}t} + 1 \Big) - \sqrt{2}c_2 \Big(e^{4\sqrt{2}t} - 1 \Big) \Big)$$

$$y(t) \to \frac{1}{2}e^{-2\sqrt{2}t} \left(c_2 \left(e^{4\sqrt{2}t} + 1 \right) - \sqrt{2}c_1 \left(e^{4\sqrt{2}t} - 1 \right) \right)$$

18.3 problem 2(c)

Internal problem ID [11543]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 2(c).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -3x$$
$$y'(t) = 2y(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 20

dsolve([diff(x(t),t)=-3*x(t),diff(y(t),t)=2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{-3t}c_1$$

$$y(t) = c_2 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 65

DSolve[{x'[t]==-3*x[t],y'[t]==3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{-3t}$$

$$y(t) \to c_2 e^{3t}$$

$$x(t) \to c_1 e^{-3t}$$

$$y(t) \to 0$$

$$x(t) \to 0$$

$$y(t) \to c_2 e^{3t}$$

$$x(t) \to 0$$

$$y(t) \to 0$$

18.4 problem 2(d)

Internal problem ID [11544]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 2(d).

ODE order: 1. ODE degree: 1.

Solve

$$x' = 4y(t)$$

$$y'(t) = 2y(t)$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 23

 $\label{eq:diff} dsolve([diff(x(t),t)=4*y(t),diff(y(t),t)=2*y(t)],[x(t),y(t)], singsol=all)$

$$x(t) = 2c_2 e^{2t} + c_1$$

$$y(t) = c_2 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.067 (sec). Leaf size: 65

DSolve[{x'[t]==4*x[t],y'[t]==2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^{4t}$$

$$y(t) \to c_2 e^{2t}$$

$$x(t) \to c_1 e^{4t}$$

$$y(t) \to 0$$

$$x(t) \to 0$$

$$y(t) \to c_2 e^{2t}$$

$$x(t) \to 0$$

$$y(t) \to 0$$

18.5 problem 3(a)

Internal problem ID [11545]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 3(a).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x$$
$$y'(t) = x + 2y(t)$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 24

dsolve([diff(x(t),t)=x(t),diff(y(t),t)=x(t)+2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -c_2 e^t$$

$$y(t) = c_1 e^{2t} + c_2 e^t$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 33

DSolve[{x'[t]==x[t],y'[t]==x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to c_1 e^t$$

$$y(t) \to e^t (c_1 (e^t - 1) + c_2 e^t)$$

18.6 problem 3(b)

Internal problem ID [11546]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 3(b).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x - y(t)$$

$$y'(t) = x + y(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 33

dsolve([diff(x(t),t)=x(t)-y(t),diff(y(t),t)=x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{t}(c_1 \cos(t) - \sin(t) c_2)$$

$$y(t) = e^t(c_1 \sin(t) + c_2 \cos(t))$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 39

DSolve[{x'[t]==x[t]-y[t],y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow e^t(c_1 \cos(t) - c_2 \sin(t))$$

$$y(t) \rightarrow e^t(c_2 \cos(t) + c_1 \sin(t))$$

18.7 problem 3(c)

Internal problem ID [11547]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 3(c).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x + 2y(t)$$
$$y'(t) = x$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 36

dsolve([diff(x(t),t)=x(t)+2*y(t),diff(y(t),t)=x(t)],[x(t),y(t)], singsol=all)

$$x(t) = -e^{-t}c_1 + 2c_2e^{2t}$$

$$y(t) = e^{-t}c_1 + c_2e^{2t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 71

DSolve[{x'[t]==x[t]+2*y[t],y'[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{3}e^{-t}(c_1(2e^{3t}+1)+2c_2(e^{3t}-1))$$

$$y(t) o rac{1}{3}e^{-t} \left(c_1 \left(e^{3t} - 1\right) + c_2 \left(e^{3t} + 2\right)\right)$$

18.8 problem 3(d)

Internal problem ID [11548]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 190

Problem number: 3(d).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -x - 2y(t)$$
$$y'(t) = 2x - y(t)$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 45

dsolve([diff(x(t),t)=-x(t)-2*y(t),diff(y(t),t)=2*x(t)-y(t)],[x(t), y(t)], singsol=all)

$$x(t) = e^{-t}(\cos(2t) c_1 - \sin(2t) c_2)$$

$$y(t) = e^{-t}(c_1 \sin(2t) + c_2 \cos(2t))$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 51

$$x(t) \to e^{-t}(c_1 \cos(2t) - c_2 \sin(2t))$$

$$y(t) \to e^{-t}(c_2 \cos(2t) + c_1 \sin(2t))$$

19	\mathbf{Chapte}	r	4	1,	L	ij	n	ea	a!	r	33	75	st	e	n	n	S	•	F	צנ	(er	.C	i	S	es	3	ŗ)8	Į	g	е	4	2()2
19.1	problem 1(a)																																		225
19.2	problem 1(b)																																		226
19.3	problem 1(c)																																		227
19.4	problem 1(d)		•																								•								228
19.5	problem 1(e)		•																								•								229
19.6	problem $1(f)$.		•																								•								230
19.7	problem 3(a)																																		231
19.8	problem 3(b)																																		232

19.1 problem 1(a)

Internal problem ID [11549]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 1(a).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -2x - 3y(t)$$
$$y'(t) = -x + 4y(t)$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 95

dsolve([diff(x(t),t)=-2*x(t)-3*y(t),diff(y(t),t)=-x(t)+4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -2c_1 e^{\left(1+2\sqrt{3}\right)t} \sqrt{3} + 2c_2 e^{-\left(-1+2\sqrt{3}\right)t} \sqrt{3} + 3c_1 e^{\left(1+2\sqrt{3}\right)t} + 3c_2 e^{-\left(-1+2\sqrt{3}\right)t}$$

$$y(t) = c_1 e^{(1+2\sqrt{3})t} + c_2 e^{-(-1+2\sqrt{3})t}$$

✓ Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 144

$$x(t) \to -\frac{1}{4}e^{t-2\sqrt{3}t} \left(c_1 \left(\left(\sqrt{3} - 2 \right) e^{4\sqrt{3}t} - 2 - \sqrt{3} \right) + \sqrt{3}c_2 \left(e^{4\sqrt{3}t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{12} e^{t-2\sqrt{3}t} \left(3c_2 \left(\left(2 + \sqrt{3} \right) e^{4\sqrt{3}t} + 2 - \sqrt{3} \right) - \sqrt{3}c_1 \left(e^{4\sqrt{3}t} - 1 \right) \right)$$

19.2 problem 1(b)

Internal problem ID [11550]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 1(b).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -3y(t)$$
$$y'(t) = -2x + y(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-3*y(t),diff(y(t),t)=-2*x(t)+y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -c_1 e^{3t} + \frac{3c_2 e^{-2t}}{2}$$

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 74

$$x(t) \to \frac{1}{5}e^{-2t} \left(c_1 \left(2e^{5t} + 3\right) - 3c_2 \left(e^{5t} - 1\right)\right)$$

$$y(t) \to \frac{1}{5}e^{-2t} \left(c_2 \left(3e^{5t} + 2\right) - 2c_1 \left(e^{5t} - 1\right)\right)$$

19.3 problem 1(c)

Internal problem ID [11551]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 1(c).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -2x$$
$$y'(t) = x$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 23

dsolve([diff(x(t),t)=-2*x(t),diff(y(t),t)=x(t)],[x(t), y(t)], singsol=all)

$$x(t) = -2c_2 e^{-2t}$$

$$y(t) = c_1 + c_2 e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 35

DSolve[{x'[t]==-2*x[t],y'[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \rightarrow c_1 e^{-2t}$$

$$y(t) \to c_1 \left(\frac{1}{2} - \frac{e^{-2t}}{2}\right) + c_2$$

19.4 problem 1(d)

Internal problem ID [11552]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 1(d).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -2x - y(t)$$
$$y'(t) = -4y(t)$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 28

dsolve([diff(x(t),t)=-2*x(t)-y(t),diff(y(t),t)=-4*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = \frac{c_2 e^{-4t}}{2} + e^{-2t} c_1$$

$$y(t) = c_2 e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 43

$$x(t) \to \frac{1}{2}e^{-4t}((2c_1 - c_2)e^{2t} + c_2)$$

$$y(t) \to c_2 e^{-4t}$$

19.5 problem 1(e)

Internal problem ID [11553]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 1(e).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x - 2y(t)$$
$$y'(t) = -2x + 4y(t)$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 27

dsolve([diff(x(t),t)=x(t)-2*y(t),diff(y(t),t)=-2*x(t)+4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{c_2 e^{5t}}{2} + 2c_1$$

$$y(t) = c_1 + c_2 \mathrm{e}^{5t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 62

 $DSolve[\{x'[t]==x[t]-2*y[t],y'[t]==-2*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==x[t]-2*y[t],y''[t]==-2*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==x[t]-2*y[t],y''[t]==-2*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==x[t]-2*y[t],y''[t]==-2*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==x[t]-2*y[t],y''[t]==-2*x[t]+4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]==x[t]-2*x[t]+4*y[t]),\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]=x[t]-2*x[t]+4*y[t]),\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]=x[t]-2*x[t]+4*y[t]),\{x[t],y[t]\},t,IncludeSingularSolutions \rightarrow \\ (x''[t]=x[t]-2*x[t]+4*y[t]),\{x[t]=x[t]-2*x[t]+4*y[t]),\{x[t]=x[t]-2*x[t]+4*y[t]),\{x[t]=x[t]-2*x[t]+4*y[t]),\{x[t]=x[t]-2*x[t]+4*y[t]+4*y[t]),\{x[t]=x[t]-2*x[t]+4*y[t]+4$

$$x(t) o rac{1}{5} \left(c_1 \left(e^{5t} + 4 \right) - 2c_2 \left(e^{5t} - 1 \right) \right)$$

$$y(t) o rac{1}{5} \left(c_2 \left(4e^{5t} + 1 \right) - 2c_1 \left(e^{5t} - 1 \right) \right)$$

19.6 problem 1(f)

Internal problem ID [11554]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 1(f).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -6y(t)$$

y'(t) = 6y(t)

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 23

dsolve([diff(x(t),t)=-6*y(t),diff(y(t),t)=6*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -c_2 e^{6t} + c_1$$

$$y(t) = c_2 e^{6t}$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 30

DSolve[{x'[t]==-6*y[t],y'[t]==6*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to -c_2 e^{6t} + c_1 + c_2$$

$$y(t) \to c_2 e^{6t}$$

19.7 problem 3(a)

Internal problem ID [11555]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 3(a).

ODE order: 1. ODE degree: 1.

Solve

$$x' = 2x + 3y(t)$$
$$y'(t) = -x - 14$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 77

dsolve([diff(x(t),t)=2*x(t)+3*y(t),diff(y(t),t)=-x(t)-14],[x(t), y(t)], singsol=all)

$$x(t) = -14 + e^t \left(\sqrt{2}\sin\left(\sqrt{2}t\right)c_1 - \sqrt{2}\cos\left(\sqrt{2}t\right)c_2 - \sin\left(\sqrt{2}t\right)c_2 - \cos\left(\sqrt{2}t\right)c_1\right)$$

$$y(t) = \frac{28}{3} + e^t \left(\sin \left(\sqrt{2} t \right) c_2 + \cos \left(\sqrt{2} t \right) c_1 \right)$$

✓ Solution by Mathematica

Time used: 0.315 (sec). Leaf size: 89

$$x(t) \rightarrow c_1 e^t \cos\left(\sqrt{2}t\right) + \frac{(c_1 + 3c_2)e^t \sin\left(\sqrt{2}t\right)}{\sqrt{2}} - 14$$

$$y(t) \to c_2 e^t \cos(\sqrt{2}t) - \frac{(c_1 + c_2)e^t \sin(\sqrt{2}t)}{\sqrt{2}} + \frac{28}{3}$$

19.8 problem 3(b)

Internal problem ID [11556]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 202

Problem number: 3(b).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -3x + 3y(t)$$
$$y'(t) = x + 2y(t) - 1$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 88

$$\frac{dsolve([diff(x(t),t)=-3*x(t)+3*y(t),diff(y(t),t)=x(t)+2*y(t)-1],[x(t),y(t)],}{singsol=all)}$$

$$x(t) = -\frac{\mathrm{e}^{-\frac{\left(1+\sqrt{37}\right)t}{2}}c_1\sqrt{37}}{2} + \frac{\mathrm{e}^{\frac{\left(-1+\sqrt{37}\right)t}{2}}c_2\sqrt{37}}{2} - \frac{5\,\mathrm{e}^{-\frac{\left(1+\sqrt{37}\right)t}{2}}c_1}{2} - \frac{5\,\mathrm{e}^{\frac{\left(-1+\sqrt{37}\right)t}{2}}c_2}{2} + \frac{1}{3}$$

$$y(t) = e^{\frac{\left(-1+\sqrt{37}\right)t}{2}}c_2 + e^{-\frac{\left(1+\sqrt{37}\right)t}{2}}c_1 + \frac{1}{3}$$

✓ Solution by Mathematica

Time used: 0.67 (sec). Leaf size: 192

 $DSolve[\{x'[t]==-3*x[t]+3*y[t],y'[t]==x[t]+2*y[t]-1\},\{x[t],y[t]\},t,IncludeSingularSolutions-1,t]$

$$\begin{split} x(t) &\to \frac{1}{222} e^{-\frac{1}{2}\left(1+\sqrt{37}\right)t} \left(74 e^{\frac{1}{2}\left(1+\sqrt{37}\right)t} - 3\left(\left(5\sqrt{37} - 37\right)c_1 - 6\sqrt{37}c_2\right)e^{\sqrt{37}t} \right. \\ &\quad + 3\left(\left(37 + 5\sqrt{37}\right)c_1 - 6\sqrt{37}c_2\right)\right) \\ y(t) &\to \frac{1}{222} e^{-\frac{1}{2}\left(1+\sqrt{37}\right)t} \left(74 e^{\frac{1}{2}\left(1+\sqrt{37}\right)t} + 3\left(2\sqrt{37}c_1 + \left(37 + 5\sqrt{37}\right)c_2\right)e^{\sqrt{37}t} \right. \\ &\quad \left. - 3\left(2\sqrt{37}c_1 + \left(5\sqrt{37} - 37\right)c_2\right)\right) \end{split}$$

20	Chapter	•	4	Ļ,]	L	ij	n	e	a!	r	5	33	75	st	e	n	n	S	•	E	צנ	ζ(er	.C	i	S	98	3	r	8	į	ge	9	2	21	8
20.1	problem 2(a)																																			4	235
20.2	problem 2(b)																																			2	236
20.3	problem 2(c)																																			4	237
20.4	problem 2(d)					•																														2	238
20.5	problem 4																																			4	239
20.6	problem 5																																			4	240

20.1 problem 2(a)

Internal problem ID [11557]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 218

Problem number: 2(a).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -x + y(t)$$
$$y'(t) = -3y(t)$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 28

dsolve([diff(x(t),t)=-x(t)+y(t),diff(y(t),t)=-3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{c_2 e^{-3t}}{2} + e^{-t} c_1$$

$$y(t) = c_2 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 43

DSolve[{x'[t]==-x[t]+y[t],y'[t]==-3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to \frac{1}{2}e^{-3t} ((2c_1 + c_2)e^{2t} - c_2)$$

 $y(t) \to c_2 e^{-3t}$

20.2 problem 2(b)

Internal problem ID [11558]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 218

Problem number: 2(b).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x$$
$$y'(t) = 3x - 4y(t)$$

✓ Solution by Maple

Time used: 0.11 (sec). Leaf size: 24

dsolve([diff(x(t),t)=x(t),diff(y(t),t)=3*x(t)-4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{5c_2 e^t}{3}$$

$$y(t) = e^{-4t}c_1 + c_2e^t$$

✓ Solution by Mathematica

Time used: 0.02 (sec). Leaf size: 149

$$x(t) \to \frac{1}{74} e^{-\frac{1}{2}\left(3+\sqrt{37}\right)t} \left(c_1\left(\left(37+5\sqrt{37}\right)e^{\sqrt{37}t}+37-5\sqrt{37}\right)+2\sqrt{37}c_2\left(e^{\sqrt{37}t}-1\right)\right)$$

$$y(t) \to \frac{1}{74} e^{-\frac{1}{2}\left(3+\sqrt{37}\right)t} \left(6\sqrt{37}c_1\left(e^{\sqrt{37}t}-1\right) - c_2\left(\left(5\sqrt{37}-37\right)e^{\sqrt{37}t}-37-5\sqrt{37}\right)\right)$$

20.3 problem 2(c)

Internal problem ID [11559]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 218

Problem number: 2(c).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -x + y(t)$$
$$y'(t) = x - 2y(t)$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 86

dsolve([diff(x(t),t)=-x(t)+y(t),diff(y(t),t)=x(t)-2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{c_1 \mathrm{e}^{\frac{\left(\sqrt{5}-3\right)t}{2}\sqrt{5}}}{2} - \frac{c_2 \mathrm{e}^{-\frac{\left(\sqrt{5}+3\right)t}{2}\sqrt{5}}}{2} + \frac{c_1 \mathrm{e}^{\frac{\left(\sqrt{5}-3\right)t}{2}}}{2} + \frac{c_2 \mathrm{e}^{-\frac{\left(\sqrt{5}+3\right)t}{2}}}{2}$$

$$y(t) = c_1 \mathrm{e}^{rac{\left(\sqrt{5}-3
ight)t}{2}} + c_2 \mathrm{e}^{-rac{\left(\sqrt{5}+3
ight)t}{2}}$$

✓ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 145

DSolve[{x'[t]==-x[t]+y[t],y'[t]==x[t]-2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True

$$x(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(3 + \sqrt{5}\right)t} \left(c_1 \left(\left(5 + \sqrt{5}\right) e^{\sqrt{5}t} + 5 - \sqrt{5}\right) + 2\sqrt{5}c_2 \left(e^{\sqrt{5}t} - 1\right)\right)$$

$$y(t) \to \frac{1}{10} e^{-\frac{1}{2} \left(3 + \sqrt{5}\right)t} \left(2\sqrt{5}c_1\left(e^{\sqrt{5}t} - 1\right) - c_2\left(\left(\sqrt{5} - 5\right)e^{\sqrt{5}t} - 5 - \sqrt{5}\right)\right)$$

20.4 problem 2(d)

Internal problem ID [11560]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 218

Problem number: 2(d).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x + y(t)$$
$$y'(t) = -3x + 3y(t)$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 76

dsolve([diff(x(t),t)=x(t)+y(t),diff(y(t),t)=-3*x(t)+3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^{2t} \left(\sin \left(\sqrt{2}t\right) \sqrt{2}c_2 - \cos \left(\sqrt{2}t\right) \sqrt{2}c_1 + c_1 \sin \left(\sqrt{2}t\right) + c_2 \cos \left(\sqrt{2}t\right)\right)}{3}$$

$$y(t) = e^{2t} \left(c_1 \sin \left(\sqrt{2} t \right) + c_2 \cos \left(\sqrt{2} t \right) \right)$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 94

$$x(t) o rac{1}{2}e^{2t} \Big(2c_1 \cos\left(\sqrt{2}t\right) + \sqrt{2}(c_2 - c_1)\sin\left(\sqrt{2}t\right) \Big)$$

$$y(t) \rightarrow \frac{1}{2}e^{2t} \left(2c_2 \cos\left(\sqrt{2}t\right) + \sqrt{2}(c_2 - 3c_1)\sin\left(\sqrt{2}t\right)\right)$$

20.5 problem 4

Internal problem ID [11561]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 218

Problem number: 4.

ODE order: 1.
ODE degree: 1.

Solve

$$x' = x - 2y(t)$$

$$y'(t) = 3x - 4y(t)$$

With initial conditions

$$[x(0) = 3, y(0) = 1]$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 34

$$x(t) = 7e^{-t} - 4e^{-2t}$$

$$y(t) = 7e^{-t} - 6e^{-2t}$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 34

DSolve[$\{x'[t]==x[t]-2*y[t],y'[t]==3*x[t]-4*y[t]\},\{x[0]==3,y[0]==1\},\{x[t],y[t]\},t,IncludeSing[x]=1,x[t]=1,$

$$x(t) \to e^{-2t} \left(7e^t - 4 \right)$$

$$y(t) \to e^{-2t} \left(7e^t - 6 \right)$$

20.6 problem 5

Internal problem ID [11562]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 218

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x' = 5x - y(t)$$

$$y'(t) = 3x + y(t)$$

With initial conditions

$$[x(0) = 2, y(0) = -1]$$

/

Solution by Maple

Time used: 0.063 (sec). Leaf size: 34

$$x(t) = \frac{7e^{4t}}{2} - \frac{3e^{2t}}{2}$$

$$y(t) = \frac{7e^{4t}}{2} - \frac{9e^{2t}}{2}$$

/

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 44

DSolve[{x'[t]==5*x[t]-y[t],y'[t]==3*x[t]+y[t]},{x[0]==2,y[0]==-1},{x[t],y[t]},t,IncludeSingu

$$x(t) \rightarrow \frac{1}{2}e^{2t} \left(7e^{2t} - 3\right)$$

$$y(t) \rightarrow \frac{1}{2}e^{2t} \left(7e^{2t} - 9\right)$$

21	Chapte	r 4,	Linear	Systems.	Exercises	page 225
21.1	problem 1(a)					242
21.2	problem 1(b)					243

21.1 problem 1(a)

Internal problem ID [11563]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 225

Problem number: 1(a).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -3x + y(t)$$
$$y'(t) = -3y(t)$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 24

dsolve([diff(x(t),t)=-3*x(t)+y(t),diff(y(t),t)=-3*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = (tc_2 + c_1) e^{-3t}$$

$$y(t) = c_2 \mathrm{e}^{-3t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 29

DSolve[{x'[t]==-3*x[t]+y[t],y'[t]==-3*y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

$$x(t) \to e^{-3t}(c_2t + c_1)$$

$$y(t) \to c_2 e^{-3t}$$

21.2 problem 1(b)

Internal problem ID [11564]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 225

Problem number: 1(b).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x - y(t)$$
$$y'(t) = x + 3y(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 32

dsolve([diff(x(t),t)=x(t)-y(t),diff(y(t),t)=x(t)+3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -e^{2t}(tc_2 + c_1 - c_2)$$

$$y(t) = e^{2t}(tc_2 + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 42

$$x(t) \to -e^{2t}(c_1(t-1) + c_2t)$$

$$y(t) \to e^{2t}((c_1 + c_2)t + c_2)$$

22	Cha	\mathbf{pte}	r	4	Į,]	L	ir	16	98	31	r	S	j	78	\mathbf{t}	e	n	18	3.	E	X	:	er	C	is	S E	95	3	p	a	18	ξ	•	2	37
22.1	problem	4(a)																																		245
22.2	problem	4(b)																																		246
22.3	$\operatorname{problem}$	4(c)																																		247
22.4	$\operatorname{problem}$	4(d)																																		248
22.5	$\operatorname{problem}$	4(e)																																		249
22.6	$\operatorname{problem}$	4(f).																																		251
22.7	$\operatorname{problem}$	4(g)																																		252
	$\operatorname{problem}$	` '																																		
22.9	$\operatorname{problem}$	5																																		254
22.10)problem	6																																		255

22.1 problem 4(a)

Internal problem ID [11565]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(a).

ODE order: 1. ODE degree: 1.

Solve

$$x' = x + 2y(t)$$
$$y'(t) = 3x + 2y(t)$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 36

dsolve([diff(x(t),t)=x(t)+2*y(t),diff(y(t),t)=3*x(t)+2*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -e^{-t}c_1 + \frac{2c_2e^{4t}}{3}$$

$$y(t) = \mathrm{e}^{-t}c_1 + c_2\mathrm{e}^{4t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 74

$$x(t) \to \frac{1}{5}e^{-t}(c_1(2e^{5t}+3)+2c_2(e^{5t}-1))$$

$$y(t) o rac{1}{5}e^{-t} ig(3c_1 ig(e^{5t} - 1 ig) + c_2 ig(3e^{5t} + 2 ig) ig)$$

22.2 problem 4(b)

Internal problem ID [11566]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(b).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -3x + 4y(t)$$
$$y'(t) = -3y(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 25

dsolve([diff(x(t),t)=-3*x(t)+4*y(t),diff(y(t),t)=-3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = (4tc_2 + c_1) e^{-3t}$$

$$y(t) = c_2 e^{-3t}$$

✓ Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 30

$$x(t) \to e^{-3t} (4c_2t + c_1)$$

$$y(t) \to c_2 e^{-3t}$$

22.3 problem 4(c)

Internal problem ID [11567]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(c).

ODE order: 1. ODE degree: 1.

Solve

$$x' = 2x + 2y(t)$$

$$y'(t) = 6x + 3y(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 36

dsolve([diff(x(t),t)=2*x(t)+2*y(t),diff(y(t),t)=6*x(t)+3*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{2e^{-t}c_1}{3} + \frac{c_2e^{6t}}{2}$$

$$y(t) = \mathrm{e}^{-t}c_1 + c_2\mathrm{e}^{6t}$$

✓ Solution by Mathematica

Time used: 0.011 (sec). Leaf size: 74

DSolve[{x'[t]==2*x[t]+2*y[t],y'[t]==6*x[t]+3*y[t]},{x[t],y[t]},t,IncludeSingu|arSolutions ->

$$x(t) \to \frac{1}{7}e^{-t}(c_1(3e^{7t}+4)+2c_2(e^{7t}-1))$$

$$y(t) \to \frac{1}{7}e^{-t}(6c_1(e^{7t}-1)+c_2(4e^{7t}+3))$$

22.4 problem 4(d)

Internal problem ID [11568]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(d).

ODE order: 1. ODE degree: 1.

Solve

$$x' = -5x + 3y(t)$$

$$y'(t) = 2x - 10y(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 36

dsolve([diff(x(t),t)=-5*x(t)+3*y(t),diff(y(t),t)=2*x(t)-10*y(t)],[x(t),y(t)], singsol=all)

$$x(t) = -\frac{c_1 e^{-11t}}{2} + 3c_2 e^{-4t}$$

$$y(t) = c_1 e^{-11t} + c_2 e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 72

 $DSolve[\{x'[t]=-5*x[t]+3*y[t],y'[t]=-2*x[t]-10*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \} \\ (x''[t]=-5*x[t]+3*y[t],y''[t]=-2*x[t]-10*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \} \\ (x''[t]=-5*x[t]+3*y[t],y''[t]=-2*x[t]-10*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \} \\ (x''[t]=-5*x[t]+3*y[t],y''[t]=-2*x[t]-10*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \} \\ (x''[t]=-5*x[t]+3*y[t],y''[t]=-2*x[t]-10*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions \} \\ (x''[t]=-5*x[t]+3*y[t],y''[t]=-2*x[t]-10*y[t]],\{x[t],y[t]\},t,IncludeSingularSolutions \} \\ (x''[t]=-5*x[t]+3*y[t],y''[t]=-2*x[t]-10*y[t]],\{x[t],y[t]\},t,IncludeSingularSolutions \} \\ (x''[t]=-5*x[t]+3*y[t]$

$$x(t) \to \frac{1}{7}e^{-11t} \left(c_1 \left(6e^{7t} + 1 \right) + 3c_2 \left(e^{7t} - 1 \right) \right)$$

$$y(t) \to \frac{1}{7}e^{-11t} (2c_1(e^{7t} - 1) + c_2(e^{7t} + 6))$$

22.5 problem 4(e)

Internal problem ID [11569]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(e).

ODE order: 1. ODE degree: 1.

Solve

$$x' = 2x$$
$$y'(t) = 2y(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 20

dsolve([diff(x(t),t)=2*x(t)+0*y(t),diff(y(t),t)=0*x(t)+2*y(t)],[x(t),y(t)],singsol=all)

$$x(t) = c_1 e^{2t}$$

$$y(t) = c_2 e^{2t}$$

✓ Solution by Mathematica

Time used: 0.068 (sec). Leaf size: 65

DSolve[{x'[t]==2*x[t]+0*y[t],y'[t]==0*x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions ->

$$x(t) \to c_1 e^{2t}$$

$$y(t) \to c_2 e^{2t}$$

$$x(t) \to c_1 e^{2t}$$

$$y(t) \to 0$$

$$x(t) \to 0$$

$$y(t) \to c_2 e^{2t}$$

$$x(t) \to 0$$

$$y(t) \to 0$$

22.6 problem 4(f)

Internal problem ID [11570]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(f).

ODE order: 1. ODE degree: 1.

Solve

$$x' = 3x - 2y(t)$$
$$y'(t) = 4x - y(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 54

dsolve([diff(x(t),t)=3*x(t)-2*y(t),diff(y(t),t)=4*x(t)-y(t)],[x(t), y(t)], singsol=all)

$$x(t) = \frac{e^{t}(\cos(2t) c_{1} + c_{2}\cos(2t) + c_{1}\sin(2t) - \sin(2t) c_{2})}{2}$$

$$y(t) = e^{t}(c_1 \sin(2t) + c_2 \cos(2t))$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 58

$$x(t) \to e^t(c_1 \cos(2t) + (c_1 - c_2)\sin(2t))$$

$$y(t) \rightarrow e^{t}(c_2 \cos(2t) + (2c_1 - c_2)\sin(2t))$$

22.7 problem 4(g)

Internal problem ID [11571]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(g).

ODE order: 1.
ODE degree: 1.

Solve

$$x' = 5x - 4y(t)$$
$$y'(t) = x + y(t)$$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 32

dsolve([diff(x(t),t)=5*x(t)-4*y(t),diff(y(t),t)=x(t)+y(t)],[x(t),y(t)], singsol=all)

$$x(t) = e^{3t}(2tc_2 + 2c_1 + c_2)$$

$$y(t) = e^{3t}(tc_2 + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 45

$$x(t) \rightarrow e^{3t}(2c_1t - 4c_2t + c_1)$$

$$y(t) \to e^{3t}((c_1 - 2c_2)t + c_2)$$

22.8 problem 4(h)

Internal problem ID [11572]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 4(h).

ODE order: 1. ODE degree: 1.

Solve

$$x' = 9y(t)$$
$$y'(t) = -x$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 36

dsolve([diff(x(t),t)=0*x(t)+9*y(t),diff(y(t),t)=-x(t)+0*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -3c_1 \cos(3t) + 3c_2 \sin(3t)$$

$$y(t) = c_1 \sin(3t) + c_2 \cos(3t)$$

✓ Solution by Mathematica

Time used: 0.007 (sec). Leaf size: 42

$$x(t) \to c_1 \cos(3t) + 3c_2 \sin(3t)$$

$$y(t) \to c_2 \cos(3t) - \frac{1}{3}c_1 \sin(3t)$$

22.9 problem 5

Internal problem ID [11573]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 5.

ODE order: 1.
ODE degree: 1.

Solve

$$x' = 2x + y(t)$$

$$y'(t) = -x$$

With initial conditions

$$[x(0) = 1, y(0) = -1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 14

dsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t), x(0) = 1, y(0) = -1], [x(t), y(t)],

$$x(t) = e^t$$

$$y(t) = -e^t$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 16

$$x(t) \to e^t$$

$$y(t) \to -e^t$$

22.10 problem 6

Internal problem ID [11574]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 237

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x' = x - 2y(t)$$
$$y'(t) = -2x + 4y(t)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve([diff(x(t),t)=x(t)-2*y(t),diff(y(t),t)=-2*x(t)+4*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{c_2 e^{5t}}{2} + 2c_1$$

$$y(t) = c_1 + c_2 \mathrm{e}^{5t}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 62

$$x(t) o rac{1}{5} \left(c_1 \left(e^{5t} + 4 \right) - 2c_2 \left(e^{5t} - 1 \right) \right)$$

$$y(t) o rac{1}{5} (c_2 (4e^{5t} + 1) - 2c_1 (e^{5t} - 1))$$

23	Cha	\mathbf{p}	t	e	r	4	L,]	L	ir	16	36	ı	•	S	\mathbf{y}	S	t€	n	n	s.	 E	X	:e	r	ci	S	e	3	p	8	ı٤	ge	•	2	44
23.1	problem	3																																		257
23.2	$\operatorname{problem}$	4																																		259
23.3	$\operatorname{problem}$	5																																		260
23.4	$\operatorname{problem}$	6																																		261
23.5	problem	7																																		263

23.1 problem 3

Internal problem ID [11575]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 244

Problem number: 3.

ODE order: 1. ODE degree: 1.

Solve

$$x' = 3x - y(t) + 1$$
$$y'(t) = x + y(t) + 2$$

With initial conditions

$$[x(0) = 1, y(0) = 2]$$

✓ Solution by Maple

Time used: 0.094 (sec). Leaf size: 32

$$x(t) = -\frac{3}{4} + e^{2t} \left(-\frac{3t}{2} + \frac{7}{4} \right)$$

$$y(t) = -\frac{5}{4} + e^{2t} \left(-\frac{3t}{2} + \frac{13}{4} \right)$$

✓ Solution by Mathematica

Time used: 0.071 (sec). Leaf size: 42

DSolve[{x'[t]==3*x[t]-y[t]+1,y'[t]==x[t]+y[t]+2},{x[0]==1,y[0]==2},{x[t],y[t]},t,IncludeSing

$$x(t) \to \frac{1}{4} (e^{2t}(7-6t) - 3)$$

$$y(t) \to \frac{1}{4} \left(e^{2t} (13 - 6t) - 5 \right)$$

23.2 problem 4

Internal problem ID [11576]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 244

Problem number: 4.

ODE order: 1. ODE degree: 1.

Solve

$$x' = -5x + 3y(t) + e^{-t}$$

 $y'(t) = 2x - 10y(t)$

✓ Solution by Maple

Time used: 0.063 (sec). Leaf size: 48

dsolve([diff(x(t),t)=-5*x(t)+3*y(t)+exp(-t),diff(y(t),t)=2*x(t)-10*y(t)],[x(t),y(t)], sings(x,t)=-2*x(t)+3*y(t)+3*y(t)+exp(-t),diff(y(t),t)=2*x(t)+10*y(t)],[x(t),y(t)], sings(x,t)=-2*x(t)+3*y(t)+3*y(t)+exp(-t),diff(y(t),t)=2*x(t)+10*y(t)],[x(t),y(t),y(t)]

$$x(t) = -\frac{e^{-11t}c_2}{2} + 3e^{-4t}c_1 + \frac{3e^{-t}}{10}$$

$$y(t) = e^{-11t}c_2 + e^{-4t}c_1 + \frac{e^{-t}}{15}$$

✓ Solution by Mathematica

Time used: 0.092 (sec). Leaf size: 88

DSolve[{x'[t]==-5*x[t]+3*y[t]+Exp[-t],y'[t]==2*x[t]-10*y[t]},{x[t],y[t]},t,IncludeSingularSo

$$x(t) \to \frac{1}{70}e^{-11t}(21e^{10t} + 30(2c_1 + c_2)e^{7t} + 10(c_1 - 3c_2))$$

$$y(t) \to \frac{1}{105}e^{-11t} (7e^{10t} + 15(2c_1 + c_2)e^{7t} - 30(c_1 - 3c_2))$$

23.3 problem 5

Internal problem ID [11577]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 244

Problem number: 5.

ODE order: 1. ODE degree: 1.

Solve

$$x' = y(t)$$
$$y'(t) = -x + \cos(wt)$$

✓ Solution by Maple

Time used: 0.281 (sec). Leaf size: 71

dsolve([diff(x(t),t)=0*x(t)+y(t),diff(y(t),t)=-x(t)+cos(w*t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{\cos(t) c_2 w^2 - \sin(t) c_1 w^2 - c_2 \cos(t) + c_1 \sin(t) + \cos(tw)}{(w-1)(w+1)}$$

$$y(t) = \sin(t) c_2 + c_1 \cos(t) + \frac{w \sin(tw)}{w^2 - 1}$$

✓ Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 57

DSolve[{x'[t]==0*x[t]+y[t],y'[t]==-x[t]+Cos[w*t]},{x[t],y[t]},t,IncludeSingularSolutions ->

$$x(t) \to -\frac{\cos(tw)}{w^2 - 1} + c_1 \cos(t) + c_2 \sin(t)$$

$$y(t) \to \frac{w \sin(tw)}{w^2 - 1} + c_2 \cos(t) - c_1 \sin(t)$$

23.4 problem 6

Internal problem ID [11578]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 244

Problem number: 6.

ODE order: 1. ODE degree: 1.

Solve

$$x' = 3x + 2y(t) + 3$$
$$y'(t) = 7x + 5y(t) + 2t$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 91

$$dsolve([diff(x(t),t)=3*x(t)+2*y(t)+3,diff(y(t),t)=7*x(t)+5*y(t)+2*t],[x(t),y(t)], singsol=2.5$$

$$x(t) = \frac{e^{\left(4+\sqrt{15}\right)t}c_2\sqrt{15}}{7} - \frac{e^{-\left(-4+\sqrt{15}\right)t}c_1\sqrt{15}}{7} - \frac{e^{\left(4+\sqrt{15}\right)t}c_2}{7} - \frac{e^{-\left(-4+\sqrt{15}\right)t}c_1}{7} + 4t + 17$$

$$y(t) = e^{(4+\sqrt{15})t}c_2 + e^{-(-4+\sqrt{15})t}c_1 - 6t - 25$$

✓ Solution by Mathematica

Time used: 2.783 (sec). Leaf size: 178

$$x(t) \to \frac{1}{30} e^{-\left(\left(\sqrt{15}-4\right)t\right)} \left(120 e^{\left(\sqrt{15}-4\right)t} (t+8) + \left(2\sqrt{15}c_2 - \left(\sqrt{15}-15\right)c_1\right) e^{2\sqrt{15}t} + \left(15 + \sqrt{15}\right)c_1 - 2\sqrt{15}c_2\right)$$

$$y(t) \to \frac{1}{30} e^{-\left(\left(\sqrt{15}-4\right)t\right)} \left(-60 e^{\left(\sqrt{15}-4\right)t} (3t+23) + \left(7\sqrt{15}c_1 + \left(15 + \sqrt{15}\right)c_2\right) e^{2\sqrt{15}t} - 7\sqrt{15}c_1 - \left(\sqrt{15}-15\right)c_2\right)$$

23.5 problem 7

Internal problem ID [11579]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-

Verlag, NY. 2015.

Section: Chapter 4, Linear Systems. Exercises page 244

Problem number: 7.

ODE order: 1. ODE degree: 1.

Solve

$$x' = x - 3y(t)$$
$$y'(t) = 3x + 7y(t)$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 35

dsolve([diff(x(t),t)=x(t)-3*y(t),diff(y(t),t)=3*x(t)+7*y(t)],[x(t), y(t)], singsol=all)

$$x(t) = -\frac{e^{4t}(3tc_2 + 3c_1 - c_2)}{3}$$

$$y(t) = e^{4t}(tc_2 + c_1)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 46

$$x(t) \rightarrow -e^{4t}(c_1(3t-1)+3c_2t)$$

$$y(t) \to e^{4t}(3(c_1+c_2)t+c_2)$$