A Solution Manual For

Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490	2
2	Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523	34
3	Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550	54

1 Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

1.1	problem	Problem	14.2	(\mathbf{a})		•	•	•		•	•	•	•	•	•		•	•	•	•	•	3
1.2	$\operatorname{problem}$	${\bf Problem}$	14.2	(b)																		4
1.3	$\operatorname{problem}$	${\bf Problem}$	14.2	(c)											•							5
1.4	$\operatorname{problem}$	${\bf Problem}$	14.3	(a)																		6
1.5	$\operatorname{problem}$	${\bf Problem}$	14.3	(b)											•							8
1.6	$\operatorname{problem}$	${\bf Problem}$	14.3	(c)											•							9
1.7	$\operatorname{problem}$	${\bf Problem}$	14.5	(a)											•							10
1.8	$\operatorname{problem}$	${\bf Problem}$	14.5	(b)																		11
1.9	$\operatorname{problem}$	${\bf Problem}$	14.5	(c)											•							12
1.10	$\operatorname{problem}$	${\bf Problem}$	14.6																			15
1.11	$\operatorname{problem}$	${\bf Problem}$	14.11																			16
1.12	$\operatorname{problem}$	${\bf Problem}$	14.14	ł																		17
1.13	$\operatorname{problem}$	${\bf Problem}$	14.15	. .																		18
1.14	${\bf problem}$	${\bf Problem}$	14.16	i									•		•							19
1.15	$\operatorname{problem}$	${\bf Problem}$	14.17	7																		21
1.16	$\operatorname{problem}$	${\bf Problem}$	14.23	3 (a)																		22
1.17	$\operatorname{problem}$	${\bf Problem}$	14.23	3 (b)																		23
1.18	$\operatorname{problem}$	${\bf Problem}$	14.24	l (a)																		24
1.19	${\bf problem}$	${\bf Problem}$	14.24	l (b)		•							•		•							25
1.20	$\operatorname{problem}$	${\bf Problem}$	14.24	l (c)																		26
1.21	${\bf problem}$	${\bf Problem}$	14.24	ł (d)		•							•		•							27
1.22	${\bf problem}$	Problem	14.26	j																		28
	-	${\bf Problem}$																				29
		${\bf Problem}$																				30
1.25	$\operatorname{problem}$	${\bf Problem}$	14.30) (a)																		31
1.26	$\operatorname{problem}$	${\bf Problem}$	14.30	(b))								•		•						•	32
1.27	$\operatorname{problem}$	${\bf Problem}$	14.31																			33

1.1 problem Problem 14.2 (a)

Internal problem ID [2486]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 14,\ {\bf First}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 14.4\ {\bf Exercises},\ {\bf page}\ 490$

Problem number: Problem 14.2 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y' - y^3 x = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $dsolve(diff(y(x),x)-x*y(x)^3=0,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{-x^2 + c_1}}$$

$$y(x) = -\frac{1}{\sqrt{-x^2 + c_1}}$$

✓ Solution by Mathematica

Time used: 0.17 (sec). Leaf size: 44

DSolve[y'[x]-x*y[x]^3==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{\sqrt{-x^2 - 2c_1}}$$

$$y(x) \to \frac{1}{\sqrt{-x^2 - 2c_1}}$$

$$y(x) \to 0$$

1.2 problem Problem 14.2 (b)

Internal problem ID [2487]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 14,\ {\bf First}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 14.4\ {\bf Exercises},\ {\bf page}\ 490$

Problem number: Problem 14.2 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$\frac{y'}{\tan(x)} - \frac{y}{x^2 + 1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)/tan(x)-y(x)/(1+x^2)=0,y(x), singsol=all)$

$$y(x) = c_1 \mathrm{e}^{\int rac{ an(x)}{x^2+1} dx}$$

✓ Solution by Mathematica

Time used: 9.987 (sec). Leaf size: 34

 $DSolve[y'[x]/Tan[x]-y[x]/(1+x^2)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 \exp\left(\int_1^x \frac{\tan(K[1])}{K[1]^2 + 1} dK[1]\right)$$

 $y(x) \to 0$

1.3 problem Problem 14.2 (c)

Internal problem ID [2488]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 14,\ {\bf First}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 14.4\ {\bf Exercises},\ {\bf page}\ 490$

Problem number: Problem 14.2 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [separable]

$$y'x^2 + xy^2 - 4y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 17

 $dsolve(x^2*diff(y(x),x)+x*y(x)^2=4*y(x)^2,y(x), singsol=all)$

$$y(x) = \frac{x}{4 + x \ln(x) + c_1 x}$$

✓ Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 25

DSolve[y'[x]+x*y[x]^2==4*y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2}{x^2 - 8x - 2c_1}$$

$$y(x) \to 0$$

1.4 problem Problem 14.3 (a)

Internal problem ID [2489]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.3 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]

$$y(2y^2x^2+1)y'+x(y^4+1)=0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 119

 $dsolve(y(x)*(2*x^2*y(x)^2+1)*diff(y(x),x)+x*(y(x)^4+1)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-2 - 2\sqrt{-4x^4 - 8c_1x^2 + 1}}}{2x}$$

$$y(x) = \frac{\sqrt{-2 - 2\sqrt{-4x^4 - 8c_1x^2 + 1}}}{2x}$$

$$y(x) = -\frac{\sqrt{2}\sqrt{-1 + \sqrt{-4x^4 - 8c_1x^2 + 1}}}{2x}$$

$$y(x) = \frac{\sqrt{2}\sqrt{-1 + \sqrt{-4x^4 - 8c_1x^2 + 1}}}{2x}$$

✓ Solution by Mathematica

Time used: 10.416 (sec). Leaf size: 197

 $DSolve[y[x]*(2*x^2*y[x]^2+1)*y'[x]+x*(y[x]^4+1)==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{-\frac{1+\sqrt{-4x^4+8c_1x^2+1}}{x^2}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{-\frac{1+\sqrt{-4x^4+8c_1x^2+1}}{x^2}}}{\sqrt{2}}$$

$$y(x) \to -\frac{\sqrt{\frac{-1+\sqrt{-4x^4+8c_1x^2+1}}{x^2}}}{\sqrt{2}}$$

$$y(x) \to \frac{\sqrt{\frac{-1+\sqrt{-4x^4+8c_1x^2+1}}{x^2}}}{\sqrt{2}}$$

$$y(x) \to -\sqrt[4]{-1}$$

$$y(x) \to -\sqrt[4]{-1}$$

$$y(x) \to -(-1)^{3/4}$$

$$y(x) \to (-1)^{3/4}$$

1.5 problem Problem 14.3 (b)

Internal problem ID [2490]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.3 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$2xy' + y = -3x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve(2*x*diff(y(x),x)+3*x+y(x)=0,y(x), singsol=all)

$$y(x) = -x + \frac{c_1}{\sqrt{x}}$$

✓ Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 17

DSolve[2*x*y'[x]+3*x+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x + \frac{c_1}{\sqrt{x}}$$

1.6 problem Problem 14.3 (c)

Internal problem ID [2491]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.3 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_Abel, '2nd type [_1st_order, '_with_symmetry_[F(x)*G(y),0]'], [_Abel, '_with_symmetry_[F(x)*G(y),0]'

$$(\cos(x)^2 + y\sin(2x))y' + y^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

 $dsolve((cos(x)^2+y(x)*sin(2*x))*diff(y(x),x)+y(x)^2=0,y(x), singsol=all)$

$$c_1 + y(x)^2 \tan(x) + y(x) = 0$$

✓ Solution by Mathematica

Time used: 23.536 (sec). Leaf size: 170

DSolve[(Cos[x]^2+y[x]*Sin[2*x])*y'[x]+y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\frac{\cot(x)}{2}$$

$$-\frac{\csc(2x)\sqrt{e^{-\arctanh(\cos(2x))}(4c_1\sin(2x)e^{\arctanh(\cos(2x))} + \csc(2x) + (\cos(2x) + 2)\cot(2x))}}{2\sqrt{\csc(2x)e^{-\arctanh(\cos(2x))}}}$$

$$\begin{split} y(x) &\to -\frac{\cot(x)}{2} \\ &+ \frac{\csc(2x)\sqrt{e^{-\arctan(\cos(2x))}\left(4c_1\sin(2x)e^{\arctan(\cos(2x))} + \csc(2x) + (\cos(2x) + 2)\cot(2x)\right)}}{2\sqrt{\csc(2x)e^{-\arctan(\cos(2x))}}} \end{split}$$

$$y(x) \to 0$$

1.7 problem Problem 14.5 (a)

Internal problem ID [2492]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 14,\ {\bf First}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 14.4\ {\bf Exercises},\ {\bf page}\ 490$

Problem number: Problem 14.5 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(1 - x^{2}) y' + 4yx = (1 - x^{2})^{\frac{3}{2}}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

 $dsolve((1-x^2)*diff(y(x),x)+2*x*y(x)+2*x*y(x)=(1-x^2)^(3/2),y(x), singsol=all)$

$$y(x) = (x^4 - 2x^2 + 1) c_1 - \sqrt{-x^2 + 1} x(x^2 - 1)$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 29

 $DSolve[(1-x^2)*y'[x]+2*x*y[x]+2*x*y[x] == (1-x^2)^(3/2), y[x], x, IncludeSingularSolutions -> True (-1-x^2)*y'[x] = (1-x^2)^2 (-1-x^2)^2 (-1-$

$$y(x) \to (x^2 - 1)^2 \left(\frac{x}{\sqrt{1 - x^2}} + c_1\right)$$

1.8 problem Problem 14.5 (b)

Internal problem ID [2493]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.5 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \cot(x) = -\frac{1}{\sin(x)}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(x),x)-y(x)*cot(x)+1/sin(x)=0,y(x), singsol=all)

$$y(x) = (\cot(x) + c_1)\sin(x)$$

✓ Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 13

 $DSolve[y'[x]-y[x]*Cot[x]+1/Sin[x] == 0, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \cos(x) + c_1 \sin(x)$$

1.9 problem Problem 14.5 (c)

Internal problem ID [2494]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second

edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.5 (c).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$\left(x+y^3\right)y'-y=0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 260

 $dsolve((x+y(x)^3)*diff(y(x),x)=y(x),y(x), singsol=all)$

$$y(x) = \frac{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}{3} - \frac{2c_1}{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}$$

$$y(x) = -\frac{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}{6} + \frac{c_1}{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}$$

$$-\frac{i\sqrt{3}\left(\frac{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}{3} + \frac{2c_1}{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}\right)}{2}$$

$$y(x) = -\frac{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}{6} + \frac{c_1}{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}$$

$$+\frac{i\sqrt{3}\left(\frac{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}{3} + \frac{2c_1}{\left(27x + 3\sqrt{24c_1^3 + 81x^2}\right)^{\frac{1}{3}}}\right)}$$

✓ Solution by Mathematica

Time used: 1.757 (sec). Leaf size: 263

DSolve[$(x+y[x]^3)*y'[x]==y[x],y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{2 \ 3^{2/3} c_1 - \sqrt[3]{3} \left(-9x + \sqrt{81x^2 + 24c_1^3}\right)^{2/3}}{3\sqrt[3]{-9x + \sqrt{81x^2 + 24c_1^3}}}$$

$$y(x) \to \frac{\sqrt[3]{3} \left(1 - i\sqrt{3}\right) \left(-9x + \sqrt{81x^2 + 24c_1^3}\right)^{2/3} - 2\sqrt[6]{3} \left(\sqrt{3} + 3i\right) c_1}{6\sqrt[3]{-9x + \sqrt{81x^2 + 24c_1^3}}}$$

$$y(x) \to \frac{\sqrt[3]{3} \left(1 + i\sqrt{3}\right) \left(-9x + \sqrt{81x^2 + 24c_1^3}\right)^{2/3} - 2\sqrt[6]{3} \left(\sqrt{3} - 3i\right) c_1}{6\sqrt[3]{-9x + \sqrt{81x^2 + 24c_1^3}}}$$

$$y(x) \to 0$$

1.10 problem Problem 14.6

Internal problem ID [2495]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [rational, Bernoulli]

$$y' + \frac{2x^2 + y^2 + x}{yx} = 0$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

 $dsolve(diff(y(x),x) = - (2*x^2+y(x)^2+x)/(x*y(x)),y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-9x^4 - 6x^3 + 9c_1}}{3x}$$

$$y(x) = \frac{\sqrt{-9x^4 - 6x^3 + 9c_1}}{3x}$$

Solution by Mathematica

Time used: 0.251 (sec). Leaf size: 56

DSolve[y'[x] == - $(2*x^2+y[x]^2+x)/(x*y[x]),y[x],x,IncludeSingularSolutions -> True$]

$$y(x)
ightarrow -rac{\sqrt{-x^4-rac{2x^3}{3}+c_1}}{x} \ y(x)
ightarrow rac{\sqrt{-x^4-rac{2x^3}{3}+c_1}}{x}$$

$$y(x) o rac{\sqrt{-x^4 - rac{2x^3}{3} + c_1}}{x}$$

1.11 problem Problem 14.11

Internal problem ID [2496]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, [_Abel, '2nd type', 'cl

$$(y-x)y' + 3y = -2x$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 28

dsolve((y(x)-x)*diff(y(x),x)+2*x+3*y(x)=0,y(x), singsol=all)

$$y(x) = \tan\left(\operatorname{RootOf}\left(-4_Z + \ln\left(\frac{1}{\cos\left(_Z\right)^2}\right) + 2\ln\left(x\right) + 2c_1\right)\right)x - x$$

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 45

 $DSolve[(y[x]-x)*y'[x]+2*x+3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[\frac{1}{2}\log\left(\frac{y(x)^2}{x^2} + \frac{2y(x)}{x} + 2\right) - 2\arctan\left(\frac{y(x)}{x} + 1\right) = -\log(x) + c_1, y(x)\right]$$

1.12 problem Problem **14.14**

Internal problem ID [2497]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.14.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], [_Abel, '2nd type', 'class C'], _c

$$y' - \frac{1}{x+2y+1} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve(diff(y(x),x) = 1/(x+2*y(x)+1),y(x), singsol=all)

$$y(x) = -\text{LambertW}\left(-\frac{c_1 e^{-\frac{x}{2} - \frac{3}{2}}}{2}\right) - \frac{x}{2} - \frac{3}{2}$$

✓ Solution by Mathematica

Time used: 60.047 (sec). Leaf size: 34

DSolve[y'[x] == 1/(x+2*y[x]+1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{2} igg(-2Wigg(-rac{1}{2}c_1 e^{-rac{x}{2}-rac{3}{2}} igg) - x - 3 igg)$$

1.13 problem Problem 14.15

Internal problem ID [2498]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.15.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y' + \frac{y+x}{3x+3y-4} = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 29

dsolve(diff(y(x),x) = -(x+y(x))/(3*x+3*y(x)-4),y(x), singsol=all)

$$y(x) = e^{-\text{LambertW}\left(\frac{3e^xe^{-3}e^{-c_1}}{2}\right) + x - 3 - c_1} + 2 - x$$

✓ Solution by Mathematica

Time used: 3.788 (sec). Leaf size: 33

DSolve[y'[x] == - (x+y[x])/(3*x+3*y[x]-4),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{2}{3}W(-e^{x-1+c_1}) - x + 2$$
$$y(x) \to 2 - x$$

1.14 problem Problem **14.16**

Internal problem ID [2499]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.16.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \tan(x)\cos(y)(\cos(y) + \sin(y)) = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 18

$$dsolve(diff(y(x),x) = tan(x)*cos(y(x))*(cos(y(x)) + sin(y(x))),y(x), singsol=all)$$

$$y(x) = -\arctan\left(\frac{\cos(x) - c_1}{\cos(x)}\right)$$

✓ Solution by Mathematica

Time used: 60.547 (sec). Leaf size: 143

DSolve[y'[x]==Tan[x]*Cos[y[x]]*(Cos[y[x]] + Sin[y[x]]),y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\arccos\left(-\frac{\cos(x)}{\sqrt{\cos(2x) - 2e^{\frac{c_1}{2}}\cos(x) + 1 + e^{c_1}}}\right)$$

$$y(x) \to \arccos\left(-\frac{\cos(x)}{\sqrt{\cos(2x) - 2e^{\frac{c_1}{2}}\cos(x) + 1 + e^{c_1}}}\right)$$

$$y(x) \to -\arccos\left(\frac{\cos(x)}{\sqrt{\cos(2x) - 2e^{\frac{c_1}{2}}\cos(x) + 1 + e^{c_1}}}\right)$$

$$y(x) \to \arccos\left(\frac{\cos(x)}{\sqrt{\cos(2x) - 2e^{\frac{c_1}{2}}\cos(x) + 1 + e^{c_1}}}\right)$$

1.15 problem Problem 14.17

Internal problem ID [2500]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.17.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _exact, _rational, [_Abel, '2nd ty

$$x(1 - 2yx^2)y' + y - 3y^2x^2 = 0$$

With initial conditions

$$\left[y(1) = \frac{1}{2}\right]$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 35

 $dsolve([x*(1-2*x^2*y(x))*diff(y(x),x) + y(x) = 3*x^2*y(x)^2,y(1) = 1/2],y(x), singsol=all)$

$$y(x) = \frac{1 - \sqrt{1 - x}}{2x^2}$$

$$y(x) = \frac{1 + \sqrt{1 - x}}{2x^2}$$

✓ Solution by Mathematica

Time used: 0.599 (sec). Leaf size: 53

$$y(x) \to \frac{x - \sqrt{-((x-1)x^2)}}{2x^3}$$

$$y(x) \to \frac{\sqrt{-((x-1)x^2)} + x}{2x^3}$$

1.16 problem Problem 14.23 (a)

Internal problem ID [2501]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490 **Problem number**: Problem 14.23 (a) .

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' + \frac{xy}{a^2 + x^2} = x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

 $dsolve(diff(y(x),x)+(x*y(x))/(a^2+x^2)=x,y(x), singsol=all)$

$$y(x) = \frac{a^2}{3} + \frac{x^2}{3} + \frac{c_1}{\sqrt{a^2 + x^2}}$$

✓ Solution by Mathematica

Time used: 0.043 (sec). Leaf size: 31

 $DSolve[y'[x] + (x*y[x])/(a^2+x^2) == x, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) o \frac{1}{3} (a^2 + x^2) + \frac{c_1}{\sqrt{a^2 + x^2}}$$

1.17 problem Problem 14.23 (b)

Internal problem ID [2502]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490 **Problem number**: Problem 14.23 (b) .

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{4y^2}{x^2} + y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve(diff(y(x),x)= $4*y(x)^2/x^2 - y(x)^2,y(x)$, singsol=all)

$$y(x) = \frac{x}{c_1 x + x^2 + 4}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 24

 $DSolve[y'[x] == 4*y[x]^2/x^2 - y[x]^2,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \frac{x}{x^2 - c_1 x + 4}$$

$$y(x) \to 0$$

1.18 problem Problem 14.24 (a)

Internal problem ID [2503]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.24 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - \frac{y}{x} = 1$$

With initial conditions

$$[y(1) = -1]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve([diff(y(x),x)-y(x)/x=1,y(1) = -1],y(x), singsol=all)

$$y(x) = (-1 + \ln(x)) x$$

✓ Solution by Mathematica

Time used: 0.025 (sec). Leaf size: 11

 $DSolve[\{y'[x]-y[x]/x==1,y[1]==-1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x(\log(x) - 1)$$

1.19 problem Problem 14.24 (b)

Internal problem ID [2504]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 14,\ {\bf First}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 14.4\ {\bf Exercises},\ {\bf page}\ 490$

Problem number: Problem 14.24 (b) .

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$y' - y \tan(x) = 1$$

With initial conditions

$$\left[y\left(\frac{\pi}{4}\right) = 3\right]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 13

dsolve([diff(y(x),x)-y(x)*tan(x)=1,y(1/4*Pi) = 3],y(x), singsol=all)

$$y(x) = \tan(x) + \sec(x)\sqrt{2}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 16

DSolve[{y'[x]-y[x]*Tan[x]==1,y[Pi/4]==3},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \left(\sin(x) + \sqrt{2}\right) \sec(x)$$

1.20 problem Problem 14.24 (c)

Internal problem ID [2505]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490 **Problem number**: Problem 14.24 (c) .

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y' - \frac{y^2}{x^2} = \frac{1}{4}$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 17

 $dsolve([diff(y(x),x)-y(x)^2/x^2=1/4,y(1) = 1],y(x), singsol=all)$

$$y(x) = \frac{x(\ln(x) - 4)}{2\ln(x) - 4}$$

✓ Solution by Mathematica

Time used: 0.132 (sec). Leaf size: 20

 $DSolve [\{y'[x]-y[x]^2/x^2==1/4,y[1]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x(\log(x) - 4)}{2(\log(x) - 2)}$$

1.21 problem Problem 14.24 (d)

Internal problem ID [2506]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490 **Problem number**: Problem 14.24 (d) .

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _Riccati]

$$y' - \frac{y^2}{x^2} = \frac{1}{4}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve(diff(y(x),x)-y(x)^2/x^2=1/4,y(x), singsol=all)$

$$y(x) = \frac{x(\ln(x) + c_1 - 2)}{2\ln(x) + 2c_1}$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 36

 $DSolve[y'[x]-y[x]^2/x^2==1/4,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{x(\log(x) - 2 + 4c_1)}{2(\log(x) + 4c_1)}$$

$$y(x) \to \frac{x}{2}$$

1.22 problem Problem **14.26**

Internal problem ID [2507]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$\sin(x) y' + 2y \cos(x) = 1$$

With initial conditions

$$\left[y\Big(\frac{\pi}{2}\Big)=1\right]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 10

dsolve([sin(x)*diff(y(x),x)+2*y(x)*cos(x)=1,y(1/2*Pi) = 1],y(x), singsol=all)

$$y(x) = \frac{1}{\cos(x) + 1}$$

✓ Solution by Mathematica

Time used: 0.046 (sec). Leaf size: 14

DSolve[{Sin[x]*y'[x]+2*y[x]*Cos[x]==1,y[Pi/2]==1},y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \tan\left(\frac{x}{2}\right)\csc(x)$$

1.23 problem Problem 14.28

Internal problem ID [2508]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$(5x + y - 7)y' - 3y = 3x + 3$$

✓ Solution by Maple

Time used: 0.563 (sec). Leaf size: 327

$$\label{eq:dsolve} \\ \mbox{dsolve}((5*x+y(x)-7)*diff(y(x),x)=3*(x+y(x)+1),y(x), \ \mbox{singsol=all}) \\$$

$$y(x) = -3$$

$$144(-2+x) \left(-\frac{\left(1-216(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1}\right)^{\frac{1}{3}}}{24} - \frac{1}{24\left(1-216(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1}\right)^{\frac{1}{3}}} - \frac{1}{24\left(1-216(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1}\right)^{\frac{1}{3}}} - \frac{1}{24\left(1-216(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1}\right)^{\frac{1}{3}}} - \frac{6}{\left(1-216(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1}\right)^{\frac{1}{3}}} - \frac{6}{\left(1-216(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^2c_1+12\sqrt{324(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^2-3(-2+x)^4c_1^2-3(-2+x)^4c_1^2-3(-2+x)^4-2(-2+x)^4c_1^2-3(-2+x)$$

✓ Solution by Mathematica

Time used: 60.172 (sec). Leaf size: 1626

$$DSolve[(5*x+y[x]-7)*y'[x] == 3*(x+y[x]+1),y[x],x,IncludeSingularSolutions \rightarrow True]$$

Too large to display

1.24 problem Problem 14.29

Internal problem ID [2509]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 14,\ {\bf First}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 14.4\ {\bf Exercises},\ {\bf page}\ 490$

Problem number: Problem 14.29.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$xy' + y - \frac{y^2}{x^{\frac{3}{2}}} = 0$$

With initial conditions

$$[y(1) = 1]$$

✓ Solution by Maple

Time used: 0.062 (sec). Leaf size: 18

 $dsolve([x*diff(y(x),x)+y(x)-y(x)^2/x^(3/2)=0,y(1) = 1],y(x), singsol=all)$

$$y(x) = \frac{5x^{\frac{3}{2}}}{3x^{\frac{5}{2}} + 2}$$

✓ Solution by Mathematica

Time used: 0.162 (sec). Leaf size: 23

 $DSolve[\{x*y'[x]+y[x]-y[x]^2/x^3/2)==0,y[1]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{5x^{3/2}}{3x^{5/2} + 2}$$

1.25 problem Problem 14.30 (a)

Internal problem ID [2510]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.30 (a).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$(2\sin(y) - x)y' - \tan(y) = 0$$

With initial conditions

$$[y(0) = 0]$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 5

dsolve([(2*sin(y(x))-x)*diff(y(x),x)=tan(y(x)),y(0) = 0],y(x), singsol=all)

$$y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 6

 $DSolve[\{(2*Sin[y[x]]-x)*y'[x]==Tan[y[x]],y[0]==0\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to 0$$

1.26 problem Problem 14.30 (b)

Internal problem ID [2511]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.30 (b).

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$(2\sin(y) - x)y' - \tan(y) = 0$$

With initial conditions

$$\left[y(0) = \frac{\pi}{2}\right]$$

✓ Solution by Maple

Time used: 6.969 (sec). Leaf size: 18

dsolve([(2*sin(y(x))-x)*diff(y(x),x)=tan(y(x)),y(0) = 1/2*Pi],y(x), singsol=all)

$$y(x) = \arcsin\left(\frac{x}{2} + \frac{\sqrt{x^2 + 4}}{2}\right)$$

✓ Solution by Mathematica

Time used: 18.018 (sec). Leaf size: 67

$$y(x) \to \cot^{-1}\left(\sqrt{\frac{x^2}{2} - \frac{1}{2}\sqrt{x^4 + 4x^2}}\right)$$

$$y(x) \to \cot^{-1} \left(\frac{\sqrt{x^2 + \sqrt{x^2 (x^2 + 4)}}}{\sqrt{2}} \right)$$

1.27 problem Problem 14.31

Internal problem ID [2512]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 14, First order ordinary differential equations. 14.4 Exercises, page 490

Problem number: Problem 14.31.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible

$$y'' + {y'}^2 + y' = 0$$

With initial conditions

$$[y(0) = 0]$$

Solution by Maple

Time used: 0.078 (sec). Leaf size: 18

 $dsolve([diff(y(x),x\$2)+ (diff(y(x),x))^2+diff(y(x),x)=0,y(0)=0],y(x), singsol=all)$

$$y(x) = \ln (e^x c_2 - c_2 + 1) - x$$

✓ Solution by Mathematica

Time used: 0.395 (sec). Leaf size: 54

 $DSolve[\{y''[x]+(y'[x])^2+y'[x]==0,y[0]==0\},y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \log(-e^x) - \log(e^x) - i\pi$$

 $y(x) \to -\log(e^x) + \log(-e^x + e^{c_1}) - \log(-1 + e^{c_1})$

2 Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523

2.1	problem	Problem	15.1		•	•								•	•			•	35
2.2	$\operatorname{problem}$	${\bf Problem}$	15.2(a	ı) .															36
2.3	${\bf problem}$	${\bf Problem}$	15.2(t	o) .															37
2.4	${\bf problem}$	${\bf Problem}$	15.4																38
2.5	${\bf problem}$	${\bf Problem}$	15.5(a	J) .															39
2.6	${\bf problem}$	${\bf Problem}$	15.5(b	o) .															40
2.7	${\bf problem}$	${\bf Problem}$	15.7																41
2.8	${\bf problem}$	${\bf Problem}$	15.9(a	J) .															42
2.9	${\rm problem}$	${\bf Problem}$	15.9(t) .															43
2.10	${\rm problem}$	$\mathbf{Problem}$	15.21																46
2.11	${\bf problem}$	${\bf Problem}$	15.22																47
2.12	${\rm problem}$	$\mathbf{Problem}$	15.23																48
2.13	${\bf problem}$	${\bf Problem}$	15.24((a)															49
2.14	${\bf problem}$	${\bf Problem}$	15.24((b)															50
2.15	${\bf problem}$	${\bf Problem}$	15.33																51
2.16	${\bf problem}$	${\bf Problem}$	15.34																52
2.17	problem	Problem	15.35																53

2.1 problem Problem 15.1

Internal problem ID [2513]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 15,\ {\bf Higher}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 15.4\ {\bf Exercises},\ {\bf page}\ 523$

Problem number: Problem 15.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$x'' + \omega_0^2 x = a \cos(\omega t)$$

With initial conditions

$$[x(0) = 0, x'(0) = 0]$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 28

 $dsolve([diff(x(t),t$2)+(omega_0)^2*x(t)=a*cos(omega*t),x(0) = 0, D(x)(0) = 0],x(t), singson(x,t) = 0$

$$x(t) = \frac{a(\cos(\omega_0 t) - \cos(\omega t))}{\omega^2 - \omega_0^2}$$

✓ Solution by Mathematica

Time used: 0.371 (sec). Leaf size: 33

DSolve[{x''[t]+(Subscript[\[Omega],0])^2*x[t]==a*Cos[\[Omega]*t],{x[0]==0,x'[0]==0}},x[t],t,

$$x(t) \to \frac{a(\cos(t\omega_0) - \cos(t\omega))}{\omega^2 - \omega_0^2}$$

2.2 problem Problem 15.2(a)

Internal problem ID [2514]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 15,\ {\bf Higher}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 15.4\ {\bf Exercises},\ {\bf page}\ 523$

Problem number: Problem 15.2(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _missing_x]]

$$f'' + 2f' + 5f = 0$$

With initial conditions

$$[f(0) = 1, f'(0) = 0]$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve([diff(f(t),t\$2)+2*diff(f(t),t)+5*f(t)=0,f(0) = 1, D(f)(0) = 0],f(t), singsol=all)

$$f(t) = \frac{e^{-t}(\sin{(2t)} + 2\cos{(2t)})}{2}$$

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 25

DSolve[{f''[t]+2*f'[t]+5*f[t]==0,{f[0]==1,f'[0]==0}},f[t],t,IncludeSingularSolutions -> True

$$f(t) \to \frac{1}{2}e^{-t}(\sin(2t) + 2\cos(2t))$$

2.3 problem Problem 15.2(b)

Internal problem ID [2515]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.2(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$f'' + 2f' + 5f = e^{-t}\cos(3t)$$

With initial conditions

$$[f(0) = 0, f'(0) = 0]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 25

dsolve([diff(f(t),t\$2)+2*diff(f(t),t)+5*f(t)=exp(-t)*cos(3*t),f(0) = 0, D(f)(0) = 0],f(t), s(t) = 0

$$f(t) = -\frac{\left(4\cos(t)^3 - 2\cos(t)^2 - 3\cos(t) + 1\right)e^{-t}}{5}$$

✓ Solution by Mathematica

Time used: 0.118 (sec). Leaf size: 34

DSolve[{f''[t]+2*f'[t]+5*f[t]==Exp[-t]*Cos[3*t],{f[0]==0,f'[0]==0}},f[t],t,IncludeSingularSo

$$f(t) \to \frac{2}{5}e^{-t}\sin^2\left(\frac{t}{2}\right)(2\cos(t) + 2\cos(2t) + 1)$$

2.4 problem Problem 15.4

Internal problem ID [2516]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523

Problem number: Problem 15.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$f'' + 6f' + 9f = e^{-t}$$

With initial conditions

$$[f(0) = 0, f'(0) = \lambda]$$

✓ Solution by Maple

Time used: 0.032 (sec). Leaf size: 26

dsolve([diff(f(t),t\$2)+6*diff(f(t),t)+9*f(t)=exp(-t),f(0) = 0, D(f)(0) = lambda],f(t), sings(-t),f(t) = 0, D(f)(t) = 0,

$$f(t) = \frac{(-1 + (4\lambda - 2) t) e^{-3t}}{4} + \frac{e^{-t}}{4}$$

Solution by Mathematica

Time used: 0.034 (sec). Leaf size: 28

$$f(t) \to \frac{1}{4}e^{-3t} ((4\lambda - 2)t + e^{2t} - 1)$$

2.5 problem Problem 15.5(a)

Internal problem ID [2517]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.5(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$f'' + 8f' + 12f = 12e^{-4t}$$

With initial conditions

$$[f(0) = 0, f'(0) = 0]$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 23

dsolve([diff(f(t),t\$2)+8*diff(f(t),t)+12*f(t)=12*exp(-4*t),f(0) = 0, D(f)(0) = 0],f(t), sing(f(t),t)=0

$$f(t) = \frac{3e^{-6t}}{2} + \frac{3e^{-2t}}{2} - 3e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.022 (sec). Leaf size: 23

DSolve[{f''[t]+8*f'[t]+12*f[t]==12*Exp[-4*t],{f[0]==0,f'[0]==0}},f[t],t,IncludeSingularSolut

$$f(t) o rac{3}{2} e^{-6t} \left(e^{2t} - 1\right)^2$$

2.6 problem Problem 15.5(b)

Internal problem ID [2518]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 15,\ {\bf Higher}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 15.4\ {\bf Exercises},\ {\bf page}\ 523$

Problem number: Problem 15.5(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$f'' + 8f' + 12f = 12e^{-4t}$$

With initial conditions

$$[f(0) = 0, f'(0) = -2]$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 21

 $\frac{\text{dsolve}([\text{diff}(f(t),t\$2)+8*\text{diff}(f(t),t)+12*f(t)=12*\exp(-4*t),f(0)=0,D(f)(0)=-2],f(t),\sin(t))}{\text{dsolve}([\text{diff}(f(t),t\$2)+8*\text{diff}(f(t),t)+12*f(t)=12*\exp(-4*t),f(0)=0,D(f)(0)=-2],f(t),\sin(t)=\frac{1}{2}$

$$f(t) = 2e^{-6t} + e^{-2t} - 3e^{-4t}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

$$f(t) \rightarrow e^{-6t} \left(-3e^{2t} + e^{4t} + 2 \right)$$

2.7 problem Problem 15.7

Internal problem ID [2519]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.7.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$y'' + 2y' + y = 4e^{-x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=4*exp(-x),y(x), singsol=all)

$$y(x) = e^{-x}c_2 + x e^{-x}c_1 + 2x^2 e^{-x}$$

✓ Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 23

DSolve[y''[x]+2*y'[x]+y[x]==4*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (2x^2 + c_2 x + c_1)$$

2.8 problem Problem 15.9(a)

Internal problem ID [2520]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.9(a).

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, with linear symmetries]]

$$y''' - 12y' + 16y = 32x - 8$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x\$3)-12*diff(y(x),x)+16*y(x)=32*x-8,y(x), singsol=all)

$$y(x) = 1 + 2x + c_1 e^{-4x} + c_2 e^{2x} + c_3 e^{2x} x$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 35

 $DSolve[y'''[x]-12*y'[x]+16*y[x]==32*x-8,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to c_1 e^{-4x} + c_2 e^{2x} + x(2 + c_3 e^{2x}) + 1$$

2.9 problem Problem 15.9(b)

Internal problem ID [2521]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second

edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523

Problem number: Problem 15.9(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducib]

$$0 = \frac{{y'}^2}{y^2} - \frac{y''}{y} - \frac{2a \coth(2ax) y'}{y} + 2a^2$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 407

$$2^{\frac{3}{4}}e^{-ax}e^{-\frac{\sqrt{2}\operatorname{arctanh}\left(\frac{\left(e^{4ax}+1\right)e^{-2ax}}{2}\right)}{c_{1}a}}e^{-\frac{c_{2}}{c_{1}}}\left(\left(e^{8ax}-2\,e^{4ax}+1\right)e^{\frac{3\sqrt{2}\operatorname{arctanh}\left(\frac{\left(e^{4ax}+1\right)e^{-2ax}}{2}\right)}{c_{1}a}}\right)^{\frac{1}{4}}$$

$$y(x)=-\frac{2}{2}e^{4ax}+1e^{-2ax}e^{-\frac{c_{2}}{2}}\left(e^{8ax}-2\,e^{4ax}+1e^{-2ax$$

y(x)

$$=\frac{2^{\frac{3}{4}}\mathrm{e}^{-ax}\mathrm{e}^{-\frac{\sqrt{2}\,\arctan\left(\frac{\left(\mathrm{e}^{4ax}+1\right)\mathrm{e}^{-2ax}}{2}\right)}{c_{1}a}}\mathrm{e}^{-\frac{c_{2}}{c_{1}}}\left(\left(\mathrm{e}^{8ax}-2\,\mathrm{e}^{4ax}+1\right)\mathrm{e}^{\frac{3\sqrt{2}\,\arctan\left(\frac{\left(\mathrm{e}^{4ax}+1\right)\mathrm{e}^{-2ax}}{2}\right)}{c_{1}a}}\right)^{\frac{1}{4}}}{2}}{2}$$

$$y(x) = \frac{i2^{\frac{3}{4}}e^{-ax}e^{-\frac{\sqrt{2}\operatorname{arctanh}\left(\frac{\left(e^{4ax}+1\right)e^{-2ax}}{2}\right)}{c_{1}a}}e^{-\frac{c_{2}}{c_{1}}\left(\left(e^{8ax}-2\,e^{4ax}+1\right)e^{\frac{3\sqrt{2}\operatorname{arctanh}\left(\frac{\left(e^{4ax}+1\right)e^{-2ax}}{2}\right)}{c_{1}a}\right)^{\frac{1}{4}}}e^{-\frac{c_{2}}{c_{1}}}$$

$$y(x) = i2^{\frac{3}{4}} e^{-ax} e^{-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{\left(e^{4ax}+1\right)e^{-2ax}}{2}\right)}{c_{1}a}} e^{-\frac{c_{2}}{c_{1}}} \left(\left(e^{8ax}-2 e^{4ax}+1\right) e^{\frac{3\sqrt{2} \operatorname{arctanh}\left(\frac{\left(e^{4ax}+1\right)e^{-2ax}}{2}\right)}{c_{1}a}}\right)^{\frac{1}{4}} = \frac{1}{2} e^{-\frac{c_{2}}{c_{1}}} \left(e^{8ax}-2 e^{4ax}+1\right) e^{-\frac{c_{2}}{c_{1}a}} e^{-\frac{c_{2}}{c_{$$

✓ Solution by Mathematica

Time used: 60.504 (sec). Leaf size: 287

$$DSolve [D[1/y[x]*y'[x],x] + (2*a*Coth[1/y[x]*y'[x]]) == 2*a^2,y[x],x, Include Singular Solutions \rightarrow (2*a*Coth[1/y[x]*y'[x]) == 2*a*coth[1/y[x]*y'[x]) == 2*a*coth[1/y[x]*y'[x]) == 2*a*coth[1/y[x]*y'[x]) ==$$

$$y(x) = \int c_2 \exp \left(-\frac{\operatorname{PolyLog}\left(2, \frac{(a+1)\exp\left(-2\operatorname{InverseFunction}\left[\frac{-((a+1)\log(1-\tanh(\#1)))+(a-1)\log(\tanh(\#1)+1)+2\log(1-a\tanh(\#1))}{2\left(a^2-1\right)}\right]}{a-1} \right) \right) dx} \right)$$

2.10 problem Problem **15.21**

Internal problem ID [2522]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.21.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$x^2y'' - xy' + y = x$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

 $dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=x,y(x), singsol=all)$

$$y(x) = c_2 x + \ln(x) c_1 x + \frac{\ln(x)^2 x}{2}$$

✓ Solution by Mathematica

Time used: 0.019 (sec). Leaf size: 25

 $DSolve[x^2*y''[x]-x*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}x(\log^2(x) + 2c_2\log(x) + 2c_1)$$

2.11 problem Problem **15.22**

Internal problem ID [2523]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.22.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$(x+1)^2 y'' + 3(x+1) y' + y = x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

 $dsolve((x+1)^2*diff(y(x),x$2)+3*(x+1)*diff(y(x),x)+y(x)=x^2,y(x), singsol=all)$

$$y(x) = \frac{\ln(x+1)c_1}{x+1} + \frac{c_2}{x+1} - \frac{-2x^3 + 3x^2 + 6\ln(x+1) - 6x}{18(x+1)}$$

✓ Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 44

$$y(x) \to \frac{2x^3 - 3x^2 + 6x + 6(-1 + 3c_2)\log(x+1) + 18c_1}{18(x+1)}$$

2.12 problem Problem 15.23

Internal problem ID [2524]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 15,\ {\bf Higher}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 15.4\ {\bf Exercises},\ {\bf page}\ 523$

Problem number: Problem 15.23.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,

$$(x-2)y'' + 3y' + \frac{4y}{x^2} = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 30

 $dsolve((x-2)*diff(y(x),x$2)+3*diff(y(x),x)+4*y(x)/x^2=0,y(x), singsol=all)$

$$y(x) = \frac{(3x-4)c_1}{x(-2+x)^2} + \frac{x^2c_2}{(-2+x)^2}$$

✓ Solution by Mathematica

Time used: 0.074 (sec). Leaf size: 45

DSolve[$(x-2)*y''[x]+3*y'[x]+4*y[x]/x^2==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{6c_1x^3 + 3c_2x - 4c_2}{6\sqrt{2 - x}(x - 2)^{3/2}x}$$

2.13 problem Problem 15.24(a)

Internal problem ID [2525]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.24(a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - y = x^n$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 81

 $dsolve(diff(y(x),x$2)-y(x)=x^n,y(x), singsol=all)$

$$y(x) = e^{-x}c_{2} + c_{1}e^{x} + \frac{e^{-x}\left(-\left(\left(n\Gamma(n, -x) - \Gamma(n+1)\right)\left(-x\right)^{-n} + e^{x}\right)x^{n}(n+1) + e^{\frac{3x}{2}}x^{\frac{n}{2}} \text{ WhittakerM }\left(\frac{n}{2}, \frac{n}{2} + \frac{1}{2}, x\right)\right)}{2n+2}$$

✓ Solution by Mathematica

Time used: 0.055 (sec). Leaf size: 58

DSolve[y''[x]-y[x]==x^n,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{2}e^{-x}x^n(-x)^{-n}\Gamma(n+1,-x) - \frac{1}{2}e^x\Gamma(n+1,x) + c_1e^x + c_2e^{-x}$$

2.14 problem Problem 15.24(b)

Internal problem ID [2526]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.24(b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' - 2y' + y = 2x e^x$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 21

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=2*x*exp(x),y(x), singsol=all)

$$y(x) = e^x c_2 + x e^x c_1 + \frac{e^x x^3}{3}$$

✓ Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 25

DSolve[y''[x]-2*y'[x]+y[x]==2*x*Exp[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) o rac{1}{3}e^x (x^3 + 3c_2x + 3c_1)$$

2.15 problem Problem 15.33

Internal problem ID [2527]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523

Problem number: Problem 15.33.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _exact, _nonlinear]] Solve

$$2yy''' + 2(y + 3y')y'' + 2(y')^{2} - \sin(x) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 97

 $dsolve(2*y(x)*diff(y(x),x$3)+2*(y(x)+3*diff(y(x),x))*diff(y(x),x$2)+2*(diff(y(x),x))^2=sin(x)+2*(x)+$

$$y(x) = -\frac{e^{-x}\sqrt{2}\sqrt{e^{x}(-4x e^{x}c_{1} + \cos(x) e^{x} - \sin(x) e^{x} + 4c_{1}e^{x} - 4c_{3}e^{x} + 4c_{2})}}{2}$$
$$y(x) = \frac{e^{-x}\sqrt{2}\sqrt{e^{x}(-4x e^{x}c_{1} + \cos(x) e^{x} - \sin(x) e^{x} + 4c_{1}e^{x} - 4c_{3}e^{x} + 4c_{2})}}{2}$$

✓ Solution by Mathematica

Time used: 0.473 (sec). Leaf size: 88

DSolve[2*y[x]*y'''[x]+2*(y[x]+3*y'[x])*y''[x]+2*(y'[x])^2==Sin[x],y[x],x,IncludeSingularSolu

$$y(x) \to -\frac{\sqrt{-\sin(x) + \cos(x) + 2c_1x + 2c_3e^{-x} - 2c_1 - 4c_2}}{\sqrt{2}}$$
$$y(x) \to \frac{\sqrt{-\sin(x) + \cos(x) + 2c_1x + 2c_3e^{-x} - 2c_1 - 4c_2}}{\sqrt{2}}$$

2.16 problem Problem **15.34**

Internal problem ID [2528]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 15, Higher order ordinary differential equations. 15.4 Exercises, page 523 **Problem number**: Problem 15.34.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, missing y]]

$$xy''' + 2y'' = Ax$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

dsolve(x*diff(y(x),x\$3)+2*diff(y(x),x\$2)=A*x,y(x), singsol=all)

$$y(x) = \frac{A x^3}{18} - \ln(x) c_1 + c_2 x + c_3$$

✓ Solution by Mathematica

Time used: 0.048 (sec). Leaf size: 26

DSolve[x*y'''[x]+2*y''[x]==A*x,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{Ax^3}{18} + c_3x - c_1\log(x) + c_2$$

2.17 problem Problem **15.35**

Internal problem ID [2529]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

 ${\bf Section:}\ {\bf Chapter}\ 15,\ {\bf Higher}\ {\bf order}\ {\bf ordinary}\ {\bf differential}\ {\bf equations.}\ 15.4\ {\bf Exercises},\ {\bf page}\ 523$

Problem number: Problem 15.35.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, linear, nonhomogeneous]]

$$y'' + 4xy' + (4x^2 + 6) y = e^{-x^2} \sin(2x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 42

 $dsolve(diff(y(x),x\$2)+4*x*diff(y(x),x)+(4*x^2+6)*y(x)=exp(-x^2)*sin(2*x),y(x), singsol=all)$

$$y(x) = e^{-x^2} \cos(2x) c_2 + e^{-x^2} \sin(2x) c_1 - \frac{e^{-x^2} x \cos(2x)}{4}$$

✓ Solution by Mathematica

Time used: 0.13 (sec). Leaf size: 52

$$y(x) \to \frac{1}{32}e^{-x(x+2i)}(-4x - e^{4ix}(4x + i + 8ic_2) + i + 32c_1)$$

3 Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

3.1	problem	Problem	16.1		•	•	•	•		•	•		•	•		•		•	•		•	55
3.2	problem	${\bf Problem}$	16.2																			56
3.3	problem	${\bf Problem}$	16.3																			57
3.4	$\operatorname{problem}$	${\bf Problem}$	16.4																			58
3.5	$\operatorname{problem}$	${\bf Problem}$	16.6																			59
3.6	$\operatorname{problem}$	${\bf Problem}$	16.8																			60
3.7	$\operatorname{problem}$	${\bf Problem}$	16.9																			61
3.8	problem	${\bf Problem}$	16.10																			62
3.9	$\operatorname{problem}$	${\bf Problem}$	16.11																			64
3.10	$\operatorname{problem}$	${\bf Problem}$	16.12	(8	a)																	66
3.11	problem	${\bf Problem}$	16.12	(1	b)																	67
3.12	$\operatorname{problem}$	${\bf Problem}$	16.13																			68
3.13	problem	${\bf Problem}$	16.14																			69
3.14	problem	Problem	16.15																			71

3.1 problem Problem 16.1

Internal problem ID [2530]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.1.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer]

$$(-z^2+1)y''-3zy'+\lambda y=0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 63

$$y(z) = \left(1 - \frac{\lambda z^2}{2} + \frac{\lambda(\lambda - 8) z^4}{24}\right) y(0) + \left(z - \frac{(\lambda - 3) z^3}{6} + \frac{(\lambda - 3) (\lambda - 15) z^5}{120}\right) D(y)(0) + O(z^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 80

$$y(z)
ightarrow c_2 igg(rac{\lambda^2 z^5}{120} - rac{3\lambda z^5}{20} + rac{3z^5}{8} - rac{\lambda z^3}{6} + rac{z^3}{2} + z igg) + c_1 igg(rac{\lambda^2 z^4}{24} - rac{\lambda z^4}{3} - rac{\lambda z^2}{2} + 1 igg)$$

3.2 problem Problem 16.2

Internal problem ID [2531]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.2.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$4zy'' + 2(1-z)y' - y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 44

Order:=6;

dsolve(4*z*diff(y(z),z\$2)+2*(1-z)*diff(y(z),z)-y(z)=0,y(z),type='series',z=0);

$$y(z) = c_1 \sqrt{z} \left(1 + \frac{1}{3}z + \frac{1}{15}z^2 + \frac{1}{105}z^3 + \frac{1}{945}z^4 + \frac{1}{10395}z^5 + O(z^6) \right)$$
$$+ c_2 \left(1 + \frac{1}{2}z + \frac{1}{8}z^2 + \frac{1}{48}z^3 + \frac{1}{384}z^4 + \frac{1}{3840}z^5 + O(z^6) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 85

AsymptoticDSolveValue $[4*z*y''[z]+2*(1-z)*y'[z]-y[z]==0,y[z],\{z,0,5\}]$

$$y(z) \rightarrow c_1 \sqrt{z} \left(\frac{z^5}{10395} + \frac{z^4}{945} + \frac{z^3}{105} + \frac{z^2}{15} + \frac{z}{3} + 1 \right) + c_2 \left(\frac{z^5}{3840} + \frac{z^4}{384} + \frac{z^3}{48} + \frac{z^2}{8} + \frac{z}{2} + 1 \right)$$

3.3 problem Problem 16.3

Internal problem ID [2532]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second

edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.3.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,Fowler]]

$$zy'' - 2y' + 9z^5y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

Order:=7; dsolve(z*diff(y(z),z\$2)-2*diff(y(z),z)+9*z^5*y(z)=0,y(z),type='series',z=0);

$$y(z) = c_1 z^3 \left(1 - \frac{1}{6} z^6 + O(z^7) \right) + c_2 (12 - 6z^6 + O(z^7))$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 12

AsymptoticDSolveValue[$z*y''[z]-2*y'[z]+9*z^5*y[z]==0,y[z],\{z,0,6\}$]

$$y(z) \to c_2 z^3 + c_1$$

3.4 problem Problem 16.4

Internal problem ID [2533]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.4.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$f'' + 2(z-1)f' + 4f = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 52

Order:=6; dsolve(diff(f(z),z\$2)+2*(z-1)*diff(f(z),z)+4*f(z)=0,f(z),type='series',z=0);

$$f(z) = \left(1 - 2z^2 - \frac{4}{3}z^3 + \frac{2}{3}z^4 + \frac{14}{15}z^5\right)f(0) + \left(z + z^2 - \frac{1}{3}z^3 - \frac{5}{6}z^4 - \frac{1}{6}z^5\right)D(f)\left(0\right) + O\left(z^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 127

AsymptoticDSolveValue[$f''[z]+2*(z-a)*f'[z]+4*f[z]==0,f[z],\{z,0,5\}$]

$$f(z) \to c_1 \left(-\frac{4}{15} a^3 z^5 - \frac{2a^2 z^4}{3} + \frac{6az^5}{5} - \frac{4az^3}{3} + \frac{4z^4}{3} - 2z^2 + 1 \right)$$

+ $c_2 \left(\frac{2a^4 z^5}{15} + \frac{a^3 z^4}{3} - \frac{4a^2 z^5}{5} + \frac{2a^2 z^3}{3} - \frac{7az^4}{6} + az^2 + \frac{z^5}{2} - z^3 + z \right)$

3.5 problem Problem 16.6

Internal problem ID [2534]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.6.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$z^{2}y'' - \frac{3zy'}{2} + (z+1)y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 47

Order:=6; $dsolve(z^2*diff(y(z),z$2)-3/2*z*diff(y(z),z)+(1+z)*y(z)=0,y(z),type='series',z=0);$

$$y(z) = c_1 \sqrt{z} \left(1 + 2z - 2z^2 + \frac{4}{9}z^3 - \frac{2}{45}z^4 + \frac{4}{1575}z^5 + O\left(z^6\right) \right)$$
$$+ c_2 z^2 \left(1 - \frac{2}{5}z + \frac{2}{35}z^2 - \frac{4}{945}z^3 + \frac{2}{10395}z^4 - \frac{4}{675675}z^5 + O\left(z^6\right) \right)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 84

AsymptoticDSolveValue[$z^2*y''[z]-3/2*z*y'[z]+(1+z)*y[z]==0,y[z],\{z,0,5\}$]

$$y(z) \to c_1 \left(-\frac{4z^5}{675675} + \frac{2z^4}{10395} - \frac{4z^3}{945} + \frac{2z^2}{35} - \frac{2z}{5} + 1 \right) z^2$$
$$+ c_2 \left(\frac{4z^5}{1575} - \frac{2z^4}{45} + \frac{4z^3}{9} - 2z^2 + 2z + 1 \right) \sqrt{z}$$

3.6 problem Problem 16.8

Internal problem ID [2535]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.8.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Lienard]

$$zy'' - 2y' + zy = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 32

Order:=6; dsolve(z*diff(y(z),z\$2)-2*diff(y(z),z)+z*y(z)=0,y(z),type='series',z=0);

$$y(z) = c_1 z^3 \left(1 - \frac{1}{10} z^2 + \frac{1}{280} z^4 + \mathcal{O}(z^6) \right) + c_2 \left(12 + 6z^2 - \frac{3}{2} z^4 + \mathcal{O}(z^6) \right)$$

✓ Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 44

 $AsymptoticDSolveValue[z*y''[z]-2*y'[z]+z*y[z]==0,y[z],\{z,0,5\}]$

$$y(z) \rightarrow c_1 \left(-\frac{z^4}{8} + \frac{z^2}{2} + 1 \right) + c_2 \left(\frac{z^7}{280} - \frac{z^5}{10} + z^3 \right)$$

3.7 problem Problem 16.9

Internal problem ID [2536]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.9.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, exact, linear, homogeneous]]

$$y'' - 2zy' - 2y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 32

Order:=6; dsolve(diff(y(z),z\$2)-2*z*diff(y(z),z)-2*y(z)=0,y(z),type='series',z=0);

$$y(z) = \left(1 + z^2 + \frac{1}{2}z^4\right)y(0) + \left(z + \frac{2}{3}z^3 + \frac{4}{15}z^5\right)D(y)\left(0\right) + O\left(z^6\right)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 38

 $AsymptoticDSolveValue[y''[z]-2*z*y'[z]-2*y[z]==0,y[z],\{z,0,5\}]$

$$y(z) \to c_2 \left(\frac{4z^5}{15} + \frac{2z^3}{3} + z\right) + c_1 \left(\frac{z^4}{2} + z^2 + 1\right)$$

3.8 problem Problem 16.10

Internal problem ID [2537]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.10.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Jacobi]

$$\int z(1-z)y'' + (1-z)y' + \lambda y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 261

Order:=6; dsolve(z*(1-z)*diff(y(z),z\$2)+(1-z)*diff(y(z),z)+lambda*y(z)=0,y(z),type='series',z=0);

$$\begin{split} y(z) &= \left(2\lambda z + \left(\frac{1}{4}\lambda - \frac{3}{4}\lambda^2\right)z^2 + \left(-\frac{37}{108}\lambda^2 + \frac{2}{27}\lambda + \frac{11}{108}\lambda^3\right)z^3 \\ &\quad + \left(\frac{139}{1728}\lambda^3 - \frac{649}{3456}\lambda^2 + \frac{1}{32}\lambda - \frac{25}{3456}\lambda^4\right)z^4 \\ &\quad + \left(-\frac{13}{1600}\lambda^4 + \frac{8467}{144000}\lambda^3 - \frac{2527}{21600}\lambda^2 + \frac{2}{125}\lambda + \frac{137}{432000}\lambda^5\right)z^5 + \mathcal{O}\left(z^6\right)\right)c_2 \\ &\quad + \left(1 - \lambda z + \frac{1}{4}(-1 + \lambda)\lambda z^2 - \frac{1}{36}\lambda\left(\lambda^2 - 5\lambda + 4\right)z^3 + \frac{1}{576}\lambda\left(\lambda^3 - 14\lambda^2 + 49\lambda - 36\right)z^4 \\ &\quad - \frac{1}{14400}\lambda(-1 + \lambda)\left(\lambda - 4\right)\left(\lambda - 16\right)\left(\lambda - 9\right)z^5 + \mathcal{O}\left(z^6\right)\right)\left(c_2\ln(z) + c_1\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 940

 $AsymptoticDSolveValue[z*(1-z)*y''[z]+(1-z)*y''[z]+\\[Lambda]*y[z]==0,y[z],\{z,0,5\}]$

$$\begin{split} y(z) & \to \left(\frac{1}{25} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \, \lambda \right. \\ & - \frac{1}{16} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \, \lambda - \lambda\right) \, \lambda - \lambda\right) z^5 \\ & + \frac{1}{16} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) z^4 \right. \\ & + \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) z^3 + \frac{1}{4} (\lambda^2 - \lambda) \, z^2 - \lambda z + 1\right) c_1 \\ & + c_2 \left(-\frac{2}{125} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda\right) \lambda \\ & - \frac{1}{16} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda - \lambda\right) \lambda - \lambda\right) z^5 + \frac{1}{25} \left(\frac{\lambda^3}{2} \right. \\ & - 2\lambda^2 + \frac{1}{4} (\lambda^2 - \lambda) \, \lambda + \frac{2}{27} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda - \frac{1}{9} \left(\lambda^3 - 2\lambda^2 + \frac{1}{4} (\lambda^2 - \lambda) \, \lambda\right) \lambda \\ & + \frac{1}{32} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda - \lambda\right) \lambda - \lambda\right) \lambda \\ & - \frac{1}{16} \left(\frac{\lambda^3}{2} - 2\lambda^2 + \frac{1}{4} (\lambda^2 - \lambda) \, \lambda + \frac{2}{27} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda - \lambda\right) \lambda - \frac{1}{9} \left(\frac{\lambda^3}{2} - 2\lambda^2 + \frac{1}{4} (\lambda^2 - \lambda) \, \lambda\right) \lambda\right) \lambda\right) z^5 \\ & - \frac{1}{32} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda - \lambda\right) z^4 + \frac{1}{16} \left(\frac{\lambda^3}{2} - 2\lambda^2 + \frac{1}{4} (\lambda^2 - \lambda) \lambda\right) \lambda\right) z^5 \\ & + \frac{1}{4} (\lambda^2 - \lambda) \, \lambda + \frac{2}{27} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda - \frac{1}{9} \left(\frac{\lambda^3}{2} - 2\lambda^2 + \frac{1}{4} (\lambda^2 - \lambda) \, \lambda\right) \lambda\right) z^4 \\ & - \frac{2}{27} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) z^3 + \frac{1}{9} \left(\frac{\lambda^3}{2} - 2\lambda^2 + \frac{1}{4} (\lambda^2 - \lambda) \lambda\right) z^3 - \frac{\lambda^2 z^2}{2} \\ & - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) \lambda - \frac{1}{16} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda\right) \lambda - \lambda\right) z^4 \\ & + \frac{1}{16} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) z^3 + \frac{1}{9} \left(\lambda^2 - \frac{1}{4} (\lambda^2 - \lambda) \, \lambda - \lambda\right) z^2 - \lambda z + 1\right) \log(z) \end{split}$$

3.9 problem Problem 16.11

Internal problem ID [2538]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.11.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[2nd order, with linear symmetries]]

$$zy'' + (2z - 3)y' + \frac{4y}{z} = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6;

dsolve(z*diff(y(z),z\$2)+(2*z-3)*diff(y(z),z)+4/z*y(z)=0,y(z),type='series',z=0);

$$y(z) = z^{2} \left((c_{2} \ln(z) + c_{1}) \left(1 - 4z + 6z^{2} - \frac{16}{3}z^{3} + \frac{10}{3}z^{4} - \frac{8}{5}z^{5} + O(z^{6}) \right) + \left(6z - 13z^{2} + \frac{124}{9}z^{3} - \frac{173}{18}z^{4} + \frac{374}{75}z^{5} + O(z^{6}) \right) c_{2} \right)$$

✓ Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 116

 $\label{eq:asymptoticDSolveValue} A symptotic DSolveValue[z*y''[z]+(2*z-3)*y'[z]+4/z*y[z]==0,y[z],\{z,0,5\}]$

$$\begin{split} y(z) &\to c_1 \left(-\frac{8z^5}{5} + \frac{10z^4}{3} - \frac{16z^3}{3} + 6z^2 - 4z + 1 \right) z^2 \\ &+ c_2 \left(\left(\frac{374z^5}{75} - \frac{173z^4}{18} + \frac{124z^3}{9} - 13z^2 + 6z \right) z^2 \right. \\ &+ \left(-\frac{8z^5}{5} + \frac{10z^4}{3} - \frac{16z^3}{3} + 6z^2 - 4z + 1 \right) z^2 \log(z) \right) \end{split}$$

3.10 problem Problem 16.12 (a)

Internal problem ID [2539]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.12 (a).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _with_linear_symmetries]]

$$(z^2 + 5z + 6)y'' + 2y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

Order:=6; dsolve((z^2+5*z+6)*diff(y(z),z\$2)+2*y(z)=0,y(z),type='series',z=0);

$$\begin{split} y(z) &= \left(1 - \frac{1}{6}z^2 + \frac{5}{108}z^3 - \frac{13}{1296}z^4 + \frac{5}{2592}z^5\right)y(0) \\ &+ \left(z - \frac{1}{18}z^3 + \frac{5}{216}z^4 - \frac{17}{2160}z^5\right)D(y)\left(0\right) + O\left(z^6\right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

 $\label{eq:asymptoticDSolveValue} A symptotic DSolveValue [(z^2+5*z+6)*y''[z]+2*y[z]==0,y[z],\{z,0,5\}]$

$$y(z)
ightharpoonup c_2 \left(-rac{17z^5}{2160} + rac{5z^4}{216} - rac{z^3}{18} + z
ight) + c_1 \left(rac{5z^5}{2592} - rac{13z^4}{1296} + rac{5z^3}{108} - rac{z^2}{6} + 1
ight)$$

3.11 problem Problem 16.12 (b)

Internal problem ID [2540]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.12 (b).

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_Emden, _Fowler]]

$$(z^2 + 5z + 7)y'' + 2y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

Order:=6; dsolve((z^2+5*z+7)*diff(y(z),z\$2)+2*y(z)=0,y(z),type='series',z=0);

$$y(z) = \left(1 - \frac{1}{7}z^2 + \frac{5}{147}z^3 - \frac{11}{2058}z^4 + \frac{5}{14406}z^5\right)y(0) + \left(z - \frac{1}{21}z^3 + \frac{5}{294}z^4 - \frac{47}{10290}z^5\right)D(y)(0) + O(z^6)$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63

$$y(z) \rightarrow c_2 \left(-\frac{47z^5}{10290} + \frac{5z^4}{294} - \frac{z^3}{21} + z \right) + c_1 \left(\frac{5z^5}{14406} - \frac{11z^4}{2058} + \frac{5z^3}{147} - \frac{z^2}{7} + 1 \right)$$

3.12 problem Problem **16.13**

Internal problem ID [2541]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[Emden, Fowler]]

$$y'' + \frac{y}{z^3} = 0$$

With the expansion point for the power series method at z = 0.

X Solution by Maple

Order:=6; dsolve(diff(y(z),z\$2)+1/z^3*y(z)=0,y(z),type='series',z=0);

No solution found

✓ Solution by Mathematica

Time used: 0.037 (sec). Leaf size: 222

AsymptoticDSolveValue[$y''[z]+1/z^3*y[z]==0,y[z],\{z,0,5\}$]

$$\begin{split} y(z) & \to c_1 e^{-\frac{2i}{\sqrt{z}}} z^{3/4} \bigg(-\frac{468131288625iz^{9/2}}{8796093022208} + \frac{66891825iz^{7/2}}{4294967296} - \frac{72765iz^{5/2}}{8388608} + \frac{105iz^{3/2}}{8192} \\ & + \frac{33424574007825z^5}{281474976710656} - \frac{14783093325z^4}{549755813888} + \frac{2837835z^3}{268435456} - \frac{4725z^2}{524288} + \frac{15z}{512} - \frac{3i\sqrt{z}}{16} \\ & + 1 \bigg) + c_2 e^{\frac{2i}{\sqrt{z}}} z^{3/4} \bigg(\frac{468131288625iz^{9/2}}{8796093022208} - \frac{66891825iz^{7/2}}{4294967296} + \frac{72765iz^{5/2}}{8388608} - \frac{105iz^{3/2}}{8192} + \frac{33424574007825z^5}{281474976710656} - \frac{105iz^{3/2}}{8192} \bigg) \bigg\} \end{split}$$

3.13 problem Problem **16.14**

Internal problem ID [2542]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Laguerre]

$$zy'' + (1-z)y' + \lambda y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 309

Order:=6; dsolve(z*diff(y(z),z\$2)+(1-z)*diff(y(z),z)+lambda*y(z)=0,y(z),type='series',z=0);

$$\begin{split} y(z) &= \left((2\lambda + 1)\,z + \left(\frac{1}{4}\lambda + \frac{1}{4} - \frac{3}{4}\lambda^2 \right) z^2 + \left(-\frac{2}{9}\lambda^2 + \frac{1}{27}\lambda + \frac{1}{18} + \frac{11}{108}\lambda^3 \right) z^3 \\ &\quad + \left(\frac{7}{192}\lambda^3 - \frac{167}{3456}\lambda^2 + \frac{1}{192}\lambda + \frac{1}{96} - \frac{25}{3456}\lambda^4 \right) z^4 \\ &\quad + \left(\frac{1}{1500}\lambda - \frac{37}{4320}\lambda^2 + \frac{719}{86400}\lambda^3 - \frac{61}{21600}\lambda^4 + \frac{137}{432000}\lambda^5 + \frac{1}{600} \right) z^5 + \mathcal{O}\left(z^6\right) \right) c_2 \\ &\quad + \left(1 - \lambda z + \frac{1}{4}(-1 + \lambda)\lambda z^2 - \frac{1}{36}(\lambda - 2)\left(-1 + \lambda \right)\lambda z^3 \right. \\ &\quad + \frac{1}{576}(\lambda - 3)\left(\lambda - 2\right)\left(-1 + \lambda \right)\lambda z^4 - \frac{1}{14400}(\lambda - 4)\left(\lambda - 3\right)\left(\lambda - 2\right)\left(-1 + \lambda \right)\lambda z^5 \\ &\quad + \mathcal{O}\left(z^6\right) \right) \left(c_2 \ln\left(z\right) + c_1 \right) \end{split}$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 415

 $A symptotic DSolve Value [z*y''[z]+(1-z)*y'[z]+\\ [Lambda]*y[z]==0,y[z],\{z,0,5\}]$

$$\begin{split} y(z) \to c_1 \bigg(-\frac{(\lambda - 4)(\lambda - 3)(\lambda - 2)(\lambda - 1)\lambda z^5}{14400} + \frac{1}{576}(\lambda - 3)(\lambda - 2)(\lambda - 1)\lambda z^4 \\ - \frac{1}{36}(\lambda - 2)(\lambda - 1)\lambda z^3 + \frac{1}{4}(\lambda - 1)\lambda z^2 - \lambda z + 1 \bigg) \\ + c_2 \bigg(\frac{(\lambda - 4)(\lambda - 3)(\lambda - 2)(\lambda - 1)z^5}{14400} + \frac{(\lambda - 4)(\lambda - 3)(\lambda - 2)\lambda z^5}{14400} \\ + \frac{(\lambda - 4)(\lambda - 3)(\lambda - 1)\lambda z^5}{14400} + \frac{(\lambda - 4)(\lambda - 2)(\lambda - 1)\lambda z^5}{14400} \\ + \frac{137(\lambda - 4)(\lambda - 3)(\lambda - 2)(\lambda - 1)\lambda z^5}{432000} + \frac{(\lambda - 3)(\lambda - 2)(\lambda - 1)\lambda z^5}{14400} \\ - \frac{1}{576}(\lambda - 3)(\lambda - 2)(\lambda - 1)z^4 - \frac{1}{576}(\lambda - 3)(\lambda - 2)\lambda z^4 - \frac{1}{576}(\lambda - 3)(\lambda - 1)\lambda z^4 \\ - \frac{25(\lambda - 3)(\lambda - 2)(\lambda - 1)\lambda z^4}{3456} - \frac{1}{576}(\lambda - 2)(\lambda - 1)\lambda z^4 + \frac{1}{36}(\lambda - 2)(\lambda - 1)z^3 \\ + \frac{1}{36}(\lambda - 2)\lambda z^3 + \frac{11}{108}(\lambda - 2)(\lambda - 1)\lambda z^3 + \frac{1}{36}(\lambda - 1)\lambda z^3 - \frac{1}{4}(\lambda - 1)z^2 - \frac{3}{4}(\lambda - 1)\lambda z^2 \\ - \frac{\lambda z^2}{4} + \bigg(-\frac{(\lambda - 4)(\lambda - 3)(\lambda - 2)(\lambda - 1)\lambda z^5}{14400} + \frac{1}{576}(\lambda - 3)(\lambda - 2)(\lambda - 1)\lambda z^4 \\ - \frac{1}{36}(\lambda - 2)(\lambda - 1)\lambda z^3 + \frac{1}{4}(\lambda - 1)\lambda z^2 - \lambda z + 1 \bigg) \log(z) + 2\lambda z + z \bigg) \end{split}$$

3.14 problem Problem **16.15**

Internal problem ID [2543]

Book: Mathematical methods for physics and engineering, Riley, Hobson, Bence, second

edition, 2002

Section: Chapter 16, Series solutions of ODEs. Section 16.6 Exercises, page 550

Problem number: Problem 16.15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [_Gegenbauer, [_2nd_order, _linear, '_with_symmetry_[0,F(x)]']

$$(-z^2 + 1) y'' - zy' + m^2 y = 0$$

With the expansion point for the power series method at z = 0.

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

Order:=6; $dsolve((1-z^2)*diff(y(z),z$2)-z*diff(y(z),z)+m^2*y(z)=0,y(z),type='series',z=0);$

$$\begin{split} y(z) &= \left(1 - \frac{m^2 z^2}{2} + \frac{m^2 (m^2 - 4) \, z^4}{24}\right) y(0) \\ &+ \left(z - \frac{(m^2 - 1) \, z^3}{6} + \frac{(m^4 - 10 m^2 + 9) \, z^5}{120}\right) D(y) \, (0) + O \big(z^6\big) \end{split}$$

✓ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 88

$$y(z)
ightarrow c_2 igg(rac{m^4 z^5}{120} - rac{m^2 z^5}{12} - rac{m^2 z^3}{6} + rac{3 z^5}{40} + rac{z^3}{6} + z igg) + c_1 igg(rac{m^4 z^4}{24} - rac{m^2 z^4}{6} - rac{m^2 z^2}{2} + 1 igg)$$