A Solution Manual For

Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Nasser M. Abbasi

March 3, 2024

Contents

1	Chapter 2. First-Order and Simple Higher-Order Differential Equa-	
	tions. Page 78	2
2	Chapter 4. Linear Differential Equations, Page 183	123

1 Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

1.1	problem 1 .																										5
1.2	problem 2 .																										6
1.3	problem 3 .																										7
1.4	problem 4 .																										9
1.5	problem 5 .																										10
1.6	problem 6 .																										11
1.7	problem 7 .										 •																13
1.8	problem 8 .																										14
1.9	problem 9 .										 •																15
1.10	problem 10																										16
1.11	problem 11														•												17
1.12	problem 12														•												18
1.13	problem 13														•												20
1.14	problem 14																										21
1.15	problem 15		•								 •					•											22
1.16	problem 16		•								 •					•											23
	problem 17	•	•			•					 •					•									•		24
	problem 18	•								•	 •				•	•		•		•			•				25
	problem 19	•								•	 •				•	•		•		•			•				26
	problem 20		•				•			•	 •				•	•	•	•		•			•				27
	problem 21	•								•	 •				•	•		•		•			•				29
	problem 22	•								•	 •				•	•		•		•			•				30
	problem 23	•	•				•			•	 •	•	•			•	•	•		•			•				31
	problem 24	•	•				•			•	 •	•	•			•	•	•		•			•				32
	problem 25	•	•				•			•	 •	•	•			•	•	•		•			•				33
	problem 26																										36
	problem 27		•				•			•	 •				•	•	•	•		•			•				37
	problem 28	•	•	•	 •	•	•	•	•	•	 •	•	•		•	•	•	•	•	•	•	•	•		•	•	38
	problem 29	•	•				•			•	 •	•	•			•	•	•		•			•				39
	problem 30	•																									40
1.31	problem 31		•				•			•	 •				•	•	•	•		•			•				41
1.32	problem 32	•			 •				•						•												44
	problem 33	•																									45
	problem 34	•					•				 •				•		•	•		•			•				46
	problem 35	•							•		 •																47
1.36	problem 36			_								_												_			48

1.37	problem 37																	,	49
1.38	problem 38																	,	50
1.39	problem 39																	,	51
1.40	problem 41																		52
1.41	problem 42																		53
1.42	problem 43																		54
1.43	problem 44																		55
1.44	problem 45																	,	56
1.45	problem 46																		57
1.46	problem 47																	,	58
1.47	problem 48																	,	59
1.48	problem 49																		60
1.49	problem 50																		61
1.50	problem 51																		62
1.51	problem 52																	,	63
1.52	problem 53																		64
1.53	problem 54																		66
1.54	problem 55																		67
1.55	problem 56																		70
1.56	problem 57																		71
1.57	problem 58																		72
1.58	problem 59																		74
1.59	problem 60																	,	75
1.60	problem 61																		76
1.61	problem 62																		77
1.62	problem 63																		78
1.63	problem 64																		79
1.64	problem 65																		80
1.65	problem 66																	,	81
1.66	problem 68																		82
1.67	problem 69																		83
1.68	problem 71.1																		85
1.69	problem 72																	,	86
1.70	problem 73																	,	88
1.71	problem 74																		89
1.72	problem 75																		90
1.73	problem 76																		91
1.74	problem 77																		92
1 75	problem 78																		93

1.76	problem 79																			94
1.77	problem 80																			96
1.78	problem 81																			98
1.79	problem 82																			99
1.80	problem 83																			100
1.81	problem 84																			101
1.82	problem 85																			103
1.83	problem 86																			105
1.84	problem 87																			107
1.85	problem 88																			108
1.86	problem 89																			109
1.87	problem 90																			110
1.88	problem 91																			112
1.89	problem 92																			114
1.90	problem 11	1.																		115
1.91	problem 113	2 .																		117
1.92	problem 113	3.																		118
1.93	problem 11	5.																		119
1.94	problem 110	6.																		120
1.95	problem 11'	7.																		121
1.96	problem 119	9.																		122

1.1 problem 1

Internal problem ID [3146]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 1.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$\cos(y)^{2} + (1 + e^{-x})\sin(y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 18

 $dsolve(cos(y(x))^2+(1+exp(-x))*sin(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \pi - \arccos\left(\frac{1}{\ln(e^x + 1) + c_1}\right)$$

✓ Solution by Mathematica

Time used: 0.95 (sec). Leaf size: 57

DSolve[Cos[y[x]]^2+(1+Exp[-x])*Sin[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sec^{-1}(-\log(e^x + 1) + 2c_1)$$

$$y(x) \to \sec^{-1}(-\log(e^x + 1) + 2c_1)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

1.2 problem 2

Internal problem ID [3147]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 2.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{x^3 e^{x^2}}{\ln(y) y} = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 32

 $dsolve(diff(y(x),x)=(x^3*exp(x^2))/(y(x)*ln(y(x))),y(x), singsol=all)$

$$y(x) = \mathrm{e}^{rac{\mathrm{LambertW}\left(2\left(x^2\mathrm{e}^{x^2}-\mathrm{e}^{x^2}+2c_1
ight)\mathrm{e}^{-1}
ight)}{2}+rac{1}{2}}$$

Solution by Mathematica

Time used: 60.191 (sec). Leaf size: 106

 $DSolve[y'[x] == (x^3*Exp[x^2])/(y[x]*Log[y[x]]),y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt{2e^{x^2}(x^2-1)+4c_1}}{\sqrt{W\left(\frac{2e^{x^2}(x^2-1)+4c_1}{e}\right)}}$$

$$y(x) o rac{\sqrt{2e^{x^2}(x^2 - 1) + 4c_1}}{\sqrt{W\left(rac{2e^{x^2}(x^2 - 1) + 4c_1}{e}
ight)}}$$

1.3 problem 3

Internal problem ID [3148]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 3.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$x\cos(y)^2 + e^x \tan(y) y' = 0$$

/

Solution by Maple

Time used: 0.015 (sec). Leaf size: 69

 $dsolve(x*cos(y(x))^2+exp(x)*tan(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \operatorname{arccot}\left(\frac{\sqrt{-2(c_1 e^x - x - 1)e^x}}{2c_1 e^x - 2x - 2}\right)$$

$$y(x) = \pi - \operatorname{arccot}\left(\frac{\sqrt{-2(c_1 e^x - x - 1)e^x}}{2c_1 e^x - 2x - 2}\right)$$

✓ Solution by Mathematica

Time used: 15.741 (sec). Leaf size: 149

DSolve[x*Cos[y[x]]^2+Exp[x]*Tan[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sec^{-1}\left(-\sqrt{2}\sqrt{e^{-x}(x+4c_1e^x+1)}\right)$$

$$y(x) \to \sec^{-1}\left(-\sqrt{2}\sqrt{e^{-x}(x+4c_1e^x+1)}\right)$$

$$y(x) \to -\sec^{-1}\left(\sqrt{2}\sqrt{e^{-x}(x+4c_1e^x+1)}\right)$$

$$y(x) \to \sec^{-1}\left(\sqrt{2}\sqrt{e^{-x}(x+4c_1e^x+1)}\right)$$

$$y(x) \to -\frac{\pi}{2}$$

$$y(x) \to \frac{\pi}{2}$$

1.4 problem 4

Internal problem ID [3149]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 4.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$x(y^2 + 1) + (2y + 1) e^{-x}y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

 $dsolve(x*(y(x)^2+1)+(2*y(x)+1)*exp(-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \tan\left(\text{RootOf}\left(e^{x}x + \ln\left(\frac{2}{1 + \cos(2\underline{Z})}\right) + \underline{Z} - e^{x} + c_{1}\right)\right)$$

✓ Solution by Mathematica

Time used: 0.627 (sec). Leaf size: 43

 $DSolve[x*(y[x]^2+1)+(2*y[x]+1)*Exp[-x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \rightarrow \text{InverseFunction} \left[\log \left(\# 1^2 + 1 \right) + \arctan (\# 1) \& \right] \left[-e^x (x - 1) + c_1 \right]$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.5 problem 5

Internal problem ID [3150]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 5.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y^3x + y'e^{x^2} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

 $dsolve(x*y(x)^3+exp(x^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{\sqrt{-e^{-x^2} + c_1}}$$

$$y(x) = -\frac{1}{\sqrt{-e^{-x^2} + c_1}}$$

✓ Solution by Mathematica

Time used: 7.124 (sec). Leaf size: 70

DSolve[x*y[x]^3+Exp[x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o -rac{ie^{rac{x^2}{2}}}{\sqrt{1+2c_1e^{x^2}}}$$

$$y(x) o rac{ie^{rac{x^2}{2}}}{\sqrt{1 + 2c_1e^{x^2}}}$$

$$y(x) \to 0$$

1.6 problem 6

Internal problem ID [3151]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 6.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$x\cos(y)^2 + \tan(y)y' = 0$$

✓ S

Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

 $dsolve(x*cos(y(x))^2+tan(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \operatorname{arccot}\left(\frac{1}{\sqrt{-x^2 - 2c_1}}\right)$$

$$y(x) = \pi - \operatorname{arccot}\left(\frac{1}{\sqrt{-x^2 - 2c_1}}\right)$$

✓ Solution by Mathematica

Time used: 1.202 (sec). Leaf size: 103

DSolve[x*Cos[y[x]]^2+Tan[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\sec^{-1}\left(-\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to \sec^{-1}\left(-\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to -\sec^{-1}\left(\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to \sec^{-1}\left(\sqrt{-x^2 + 8c_1}\right)$$
$$y(x) \to -\frac{\pi}{2}$$
$$y(x) \to \frac{\pi}{2}$$

1.7 problem 7

Internal problem ID [3152]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 7.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$y^3x + (y+1)e^{-x}y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 71

 $dsolve(x*y(x)^3+(y(x)+1)*exp(-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{-1 + \sqrt{2 e^{x} x - 2 e^{x} + 2c_{1} + 1}}{2 (e^{x} x - e^{x} + c_{1})}$$

$$y(x) = \frac{1 + \sqrt{2}e^{x}x - 2e^{x} + 2c_{1} + 1}{2e^{x}x + 2c_{1} - 2e^{x}}$$

✓ Solution by Mathematica

Time used: 9.963 (sec). Leaf size: 88

DSolve[$x*y[x]^3+(y[x]+1)*Exp[-x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True$]

$$y(x) \to \frac{1 - \sqrt{2e^x(x-1) + 1 - 2c_1}}{2e^x(x-1) - 2c_1}$$

$$y(x) \to \frac{1 + \sqrt{2e^x(x-1) + 1 - 2c_1}}{2e^x(x-1) - 2c_1}$$

$$y(x) \to 0$$

1.8 problem 8

Internal problem ID [3153]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 8.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ A'],\ _rational,\ [_Abel,\ Abel,\ A$

$$y' + \frac{x}{y} = -2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

dsolve(diff(y(x),x)+x/y(x)+2=0,y(x), singsol=all)

$$y(x) = -\frac{x(\text{LambertW}(-c_1x) + 1)}{\text{LambertW}(-c_1x)}$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 31

DSolve[y'[x]+x/y[x]+2==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{1}{\frac{y(x)}{x}+1} + \log\left(\frac{y(x)}{x}+1\right) = -\log(x) + c_1, y(x)\right]$$

1.9 problem 9

Internal problem ID [3154]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 9.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - y - x\cot\left(\frac{y}{x}\right) = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 14

dsolve(x*diff(y(x),x)-y(x)=x*cot(y(x)/x),y(x), singsol=all)

$$y(x) = x \arccos\left(\frac{1}{c_1 x}\right)$$

✓ Solution by Mathematica

Time used: 25.917 (sec). Leaf size: 56

 $DSolve[x*y'[x]-y[x]==x*Cot[y[x]/x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x \arccos\left(\frac{e^{-c_1}}{x}\right)$$

$$y(x) \to x \arccos\left(\frac{e^{-c_1}}{x}\right)$$

$$y(x) \to -\frac{\pi x}{2}$$

$$y(x) \to \frac{\pi x}{2}$$

1.10 problem 10

Internal problem ID [3155]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 10.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$x\cos\left(\frac{y}{x}\right)^2 - y + xy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve((x*cos(y(x)/x)^2-y(x))+x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\arctan\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.5 (sec). Leaf size: 37

 $DSolve[(x*Cos[y[x]/x]^2-y[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \arctan(-\log(x) + 2c_1)$$

$$y(x) \to -\frac{\pi x}{2}$$

$$y(x) \to \frac{\pi x}{2}$$

1.11 problem 11

Internal problem ID [3156]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 11.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - y(1 + \ln(y) - \ln(x)) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

dsolve(x*diff(y(x),x)=y(x)*(1+ln(y(x))-ln(x)),y(x), singsol=all)

$$y(x) = x e^{c_1 x}$$

Solution by Mathematica

Time used: 0.228 (sec). Leaf size: 20

DSolve[x*y'[x]==y[x]*(1+Log[y[x]]-Log[x]),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to xe^{e^{c_1}x}$$

$$y(x) \to x$$

1.12 problem 12

Internal problem ID [3157]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 12.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$yx + \left(y^2 + x^2\right)y' = 0$$

✓ Solution by Maple

Time used: 0.282 (sec). Leaf size: 223

 $dsolve(x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x^2 c_1 \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

$$y(x) = \frac{\sqrt{-x^2 c_1 \left(-c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 - \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

$$y(x) = -\frac{\sqrt{x^2 c_1 \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

$$y(x) = -\frac{\sqrt{-x^2 c_1 \left(-c_1 x^2 + \sqrt{c_1^2 x^4 + 1}\right)}}{x \left(c_1 x^2 - \sqrt{c_1^2 x^4 + 1}\right) c_1}$$

✓ Solution by Mathematica

Time used: 9.087 (sec). Leaf size: 218

 $DSolve[x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$\begin{split} y(x) & \to -\sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to \sqrt{-x^2 - \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to -\sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to \sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to \sqrt{-x^2 + \sqrt{x^4 + e^{4c_1}}} \\ y(x) & \to 0 \\ y(x) & \to -\sqrt{-\sqrt{x^4 - x^2}} \\ y(x) & \to \sqrt{-\sqrt{x^4 - x^2}} \\ y(x) & \to -\sqrt{\sqrt{x^4 - x^2}} \\ y(x) & \to \sqrt{\sqrt{x^4 - x^2}} \\ \end{split}$$

1.13 problem 13

Internal problem ID [3158]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 13.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$\left(1 - e^{-\frac{y}{x}}\right)y' - \frac{y}{x} = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 26

dsolve((1-exp(-y(x)/x))*diff(y(x),x)+(1-y(x)/x)=0,y(x), singsol=all)

$$y(x) = -rac{ ext{LambertW}\left(-\mathrm{e}^{-rac{1}{c_1x}}
ight)c_1x + 1}{c_1}$$

✓ Solution by Mathematica

Time used: 60.202 (sec). Leaf size: 29

 $\overline{DSolve[(1-Exp[-y[x]/x])*y'[x]+(1-y[x]/x)==0,y[x],x,IncludeSingularSolutions} \rightarrow True]$

$$y(x) \to -xW\left(-e^{-\frac{e^{c_1}}{x}}\right) - e^{c_1}$$

1.14 problem 14

Internal problem ID [3159]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 14.

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ A'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ A'],\ _rational,\ [_Abel,\ Abel,\ A$

$$yx + y^2 - y'yx = -x^2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 25

 $dsolve((x^2-x*y(x)+y(x)^2)-x*y(x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{-LambertW\left(\frac{e^{-c_1}e^{-1}}{x}\right) - c_1 - 1} + x$$

✓ Solution by Mathematica

Time used: 3.69 (sec). Leaf size: 25

 $DSolve[(x^2-x*y[x]+y[x]^2)-x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \left(1 + W\left(\frac{e^{-1+c_1}}{x}\right)\right)$$

 $y(x) \to x$

1.15 problem 15

Internal problem ID [3160]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 15.

ODE order: 1.
ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ C'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ C'],\ _rational,\ [_Abel,\ C'],\ [_Abel,\$

$$(3 + 2x + 4y) y' - 2y = x + 1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 20

dsolve((3+2*x+4*y(x))*diff(y(x),x)=1+x+2*y(x),y(x), singsol=all)

$$y(x) = -\frac{x}{2} + \frac{\text{LambertW}(e^5 e^{8x} c_1)}{8} - \frac{5}{8}$$

✓ Solution by Mathematica

Time used: 4.849 (sec). Leaf size: 39

 $DSolve[(3+2*x+4*y[x])*y'[x] == 1+x+2*y[x], y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \to \frac{1}{8} (W(-e^{8x-1+c_1}) - 4x - 5)$$

 $y(x) \to \frac{1}{8} (-4x - 5)$

1.16 problem 16

Internal problem ID [3161]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 16.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ C'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ C'],\ _rational,\ [_Abel,\ C'],\ [_Abel,\$

$$y' - \frac{2x + y - 1}{x - y - 2} = 0$$

✓ Solution by Maple

Time used: 0.093 (sec). Leaf size: 50

dsolve(diff(y(x),x)=(2*x+y(x)-1)/(x-y(x)-2),y(x), singsol=all)

$$y(x) = -1 - \tan\left(\text{RootOf}\left(\sqrt{2} \ln\left(2 \tan\left(\underline{Z}\right)^{2} (x-1)^{2} + 2(x-1)^{2}\right) + 2\sqrt{2} c_{1} + 2\underline{Z}\right)\right) (x-1)\sqrt{2}$$

✓ Solution by Mathematica

Time used: 0.125 (sec). Leaf size: 75

 $DSolve[y'[x] == (2*x+y[x]-1)/(x-y[x]-2), y[x], x, IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[2\sqrt{2}\arctan\left(\frac{y(x)+2x-1}{\sqrt{2}(-y(x)+x-2)}\right) + \log(9) = 2\log\left(\frac{2x^2+y(x)^2+2y(x)-4x+3}{(x-1)^2}\right) + 4\log(x-1) + 3c_1, y(x)\right]$$

1.17 problem 17

Internal problem ID [3162]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 17.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _rational, [_Abel, '2nd type', 'cl

$$y - (2x + y - 4)y' = -2$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 49

dsolve(y(x)+2=(2*x+y(x)-4)*diff(y(x),x),y(x), singsol=all)

$$y(x) = \frac{1 - 4c_1 + \sqrt{4c_1x - 12c_1 + 1}}{2c_1}$$

$$y(x) = -\frac{-1 + 4c_1 + \sqrt{4c_1x - 12c_1 + 1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.28 (sec). Leaf size: 82

DSolve[y[x]+2==(2*x+y[x]-4)*y'[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{\sqrt{1+4c_1(x-3)}-1+4c_1}{2c_1}$$

$$y(x) \to \frac{\sqrt{1+4c_1(x-3)}+1-4c_1}{2c_1}$$

$$y(x) \rightarrow -2$$

 $y(x) \to \text{Indeterminate}$

$$y(x) \to 1 - x$$

1.18 problem 18

Internal problem ID [3163]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 18.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _dAlembert]

$$y' - \sin\left(-y + x\right)^2 = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 12

 $dsolve(diff(y(x),x)=sin(x-y(x))^2,y(x), singsol=all)$

$$y(x) = x + \arctan(c_1 - x)$$

✓ Solution by Mathematica

Time used: 0.199 (sec). Leaf size: 31

DSolve[y'[x]==Sin[x-y[x]]^2,y[x],x,IncludeSingularSolutions -> True]

$$Solve[2y(x) - 2(\tan(x - y(x)) - \arctan(\tan(x - y(x)))) = c_1, y(x)]$$

1.19 problem 19

Internal problem ID [3164]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 19.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class C'], _Riccati]

$$y' - (4y+1)^2 - 8yx = (x+1)^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve(diff(y(x),x)=(x+1)^2+(4*y(x)+1)^2+8*x*y(x)+1,y(x), singsol=all)$

$$y(x) = -\frac{x}{4} - \frac{1}{4} - \frac{3\tan(-6x + 6c_1)}{8}$$

Solution by Mathematica

Time used: 0.18 (sec). Leaf size: 49

 $DSolve[y'[x] == (x+1)^2 + (4*y[x]+1)^2 + 8*x*y[x]+1, y[x], x, IncludeSingularSolutions \\ -> True]$

$$y(x) \to \frac{1}{16} \left(-4x + \frac{1}{c_1 e^{12ix} - \frac{i}{12}} - (4+6i) \right)$$

$$y(x) \to \frac{1}{8}(-2x - (2+3i))$$

1.20 problem 20

Internal problem ID [3165]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 20.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [exact, rational]

$$6xy^{2} + (6yx^{2} + 4y^{3})y' = -3x^{2}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 125

 $dsolve((3*x^2+6*x*y(x)^2)+(6*x^2*y(x)+4*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{-6x^2 - 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = \frac{\sqrt{-6x^2 - 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = -\frac{\sqrt{-6x^2 + 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

$$y(x) = \frac{\sqrt{-6x^2 + 2\sqrt{9x^4 - 4x^3 - 4c_1}}}{2}$$

✓ Solution by Mathematica

Time used: 6.017 (sec). Leaf size: 163

DSolve[(3*x^2+6*x*y[x]^2)+(6*x^2*y[x]+4*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions ->

$$y(x) \to -\frac{\sqrt{-3x^2 - \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$
$$y(x) \to \frac{\sqrt{-3x^2 - \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$
$$y(x) \to -\frac{\sqrt{-3x^2 + \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$
$$y(x) \to \frac{\sqrt{-3x^2 + \sqrt{9x^4 - 4x^3 + 4c_1}}}{\sqrt{2}}$$

1.21 problem 21

Internal problem ID [3166]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 21.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, '2nd type', 'class B']]

$$-xy^{2} - 2y - (yx^{2} + 2x) y' = -2x^{2} - 3$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 53

 $dsolve((2*x^2-x*y(x)^2-2*y(x)+3)-(x^2*y(x)+2*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{-2 - \frac{\sqrt{12x^3 + 18c_1 + 54x + 36}}{3}}{x}$$

$$y(x) = \frac{-2 + \frac{\sqrt{12x^3 + 18c_1 + 54x + 36}}{3}}{x}$$

✓ Solution by Mathematica

Time used: 0.646 (sec). Leaf size: 87

$$y(x) \to -\frac{6x + \sqrt{3}\sqrt{x^2(4x^3 + 18x + 12 + 3c_1)}}{3x^2}$$

$$y(x) \to \frac{-6x + \sqrt{3}\sqrt{x^2(4x^3 + 18x + 12 + 3c_1)}}{3x^2}$$

1.22 problem 22

Internal problem ID [3167]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 22.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_Abel, '2nd type', 'class B']]

$$xy^{2} - 2y + (yx^{2} - 2x - 2y)y' = -x - 3$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 92

 $dsolve((x*y(x)^2+x-2*y(x)+3)+(x^2*y(x)-2*(x+y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{2x + \sqrt{-x^4 - 2c_1x^2 - 6x^3 + 6x^2 + 4c_1 + 12x}}{x^2 - 2}$$
$$y(x) = -\frac{-2x + \sqrt{-x^4 - 2c_1x^2 - 6x^3 + 6x^2 + 4c_1 + 12x}}{x^2 - 2}$$

✓ Solution by Mathematica

Time used: 0.549 (sec). Leaf size: 95

 $DSolve[(x*y[x]^2+x-2*y[x]+3)+(x^2*y[x]-2*(x+y[x]))*y'[x]==0,y[x],x,IncludeSingularSolutions]$

$$y(x) \to \frac{2x - \sqrt{-x^4 - 6x^3 + (6 + c_1)x^2 + 12x - 2c_1}}{x^2 - 2}$$

$$y(x) o \frac{2x + \sqrt{-x^4 - 6x^3 + (6 + c_1)x^2 + 12x - 2c_1}}{x^2 - 2}$$

1.23 problem 23

Internal problem ID [3168]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 23.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]

$$3y(x^2 - 1) + (x^3 + 8y - 3x)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 67

 $dsolve((3*y(x)*(x^2-1))+(x^3+8*y(x)-3*x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{x^3}{8} + \frac{3x}{8} - \frac{\sqrt{x^6 - 6x^4 + 9x^2 - 16c_1}}{8}$$

$$y(x) = -\frac{x^3}{8} + \frac{3x}{8} + \frac{\sqrt{x^6 - 6x^4 + 9x^2 - 16c_1}}{8}$$

✓ Solution by Mathematica

Time used: 0.17 (sec). Leaf size: 86

$$y(x) \to \frac{1}{8} \left(-x^3 - \sqrt{x^6 - 6x^4 + 9x^2 + 64c_1} + 3x \right)$$

$$y(x) \to \frac{1}{8} \left(-x^3 + \sqrt{x^6 - 6x^4 + 9x^2 + 64c_1} + 3x \right)$$

$$y(x) \to 0$$

1.24 problem 24

Internal problem ID [3169]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 24.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_1st_order, '_with_symmetry_[F(x),G(x)*y+H(x)]']]

$$\ln\left(y\right) = -x^2 - \frac{xy'}{y}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

 $dsolve((x^2+ln(y(x)))+(x/y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{-\frac{x^2}{3}} e^{-\frac{c_1}{x}}$$

✓ Solution by Mathematica

Time used: 0.247 (sec). Leaf size: 21

 $DSolve[(x^2+Log[y[x]])+(x/y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{-\frac{x^2}{3} + \frac{c_1}{x}}$$

1.25 problem 25

Internal problem ID [3170]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 25.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact]

$$2x(3x + y - y e^{-x^2}) + (x^2 + 3y^2 + e^{-x^2})y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 1085

 $dsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-x)*exp(-x^2)))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-x)*exp(-x^2)))*diff(y(x),x)=0,y(x), singsolve((2*x*(3*x+y(x)-x)*exp(-x^2)))*diff(x)=0,y(x), singsolve((2*x*(3*x+y(x)-x)*exp(-x^2)))*diff(x)=0,y(x)=0,y(x), singsolve((2*x*(3*x+y(x)-x)*exp(-x^2)))*diff(x)=0,y(x)=0$

$$y(x) = \frac{e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 10e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right) e^{-x^2} - 108 e^{-x^2} \left(\left(-216x^3 e^{x^2} + 12\sqrt{3} \sqrt{(112 e^{3x^2} x^6 + 108 e^{3x^2} c_1 x^3 + 12 e^{2x^2} x^4 + 27 e^{3x^2} c_1^2 + 12x^2 e^{x^2} + 4\right$$

✓ Solution by Mathematica

Time used: 37.566 (sec). Leaf size: 416

$$DSolve[(2*x*(3*x+y[x]-y[x]*Exp[-x^2]))+(x^2+3*y[x]^2+Exp[-x^2])*y'[x]==0,y[x],x,IncludeSingular = 0,y[x],x,IncludeSingular = 0,$$

$$y(x) \rightarrow \frac{-6\sqrt[3]{2}\left(x^{2} + e^{-x^{2}}\right) + 2^{2/3}\left(-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}\right)^{2/3}}{6\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}}}{2^{2/3}\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}}}{2^{2/3}\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}}}{6\sqrt[3]{2}}$$

$$y(x) \rightarrow \frac{\left(1 - i\sqrt{3}\right)\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}{6\sqrt[3]{2}}}$$

$$y(x) \rightarrow \frac{\left(1 - i\sqrt{3}\right)\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}{2^{2/3}\sqrt[3]{-54x^{3} + \sqrt{108\left(x^{2} + e^{-x^{2}}\right)^{3} + 729\left(-2x^{3} + c_{1}\right)^{2} + 27c_{1}}}}$$

1.26 problem 26

Internal problem ID [3171]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 26.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, [_Abel, '2nd type', 'class B']]

$$y + 2y^{2} \sin(x)^{2} + (x + 2yx - y\sin(2x))y' = -3$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 88

 $dsolve((3+y(x)+2*y(x)^2*sin(x)^2)+(x+2*x*y(x)-y(x)*sin(2*x))*diff(y(x),x)=0,y(x), singsol=al(x)+al(x$

$$y(x) = \frac{x + \sqrt{2c_1 \sin(2x) + 6x \sin(2x) - 4c_1 x - 11x^2}}{\sin(2x) - 2x}$$
$$y(x) = -\frac{-x + \sqrt{2c_1 \sin(2x) + 6x \sin(2x) - 4c_1 x - 11x^2}}{\sin(2x) - 2x}$$

✓ Solution by Mathematica

Time used: 1.378 (sec). Leaf size: 97

 $DSolve[(3+y[x]+2*y[x]^2*Sin[x]^2)+(x+2*x*y[x]-y[x]*Sin[2*x])*y'[x]==0,y[x],x,IncludeSingular]$

$$y(x) \to \frac{x - i\sqrt{x(11x + 2c_1) - (6x + c_1)\sin(2x)}}{\sin(2x) - 2x}$$

$$y(x) \to \frac{x + i\sqrt{x(11x + 2c_1) - (6x + c_1)\sin(2x)}}{\sin(2x) - 2x}$$

1.27 problem 27

Internal problem ID [3172]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 27.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$2yx + (x^2 + 2yx + y^2)y' = 0$$

✓ Solution by Maple

Time used: 0.141 (sec). Leaf size: 56

 $dsolve((2*x*y(x))+(x^2+2*x*y(x)+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -x + \sqrt{2} x \tan \left(\text{RootOf} \left(2\sqrt{2} \ln \left(-x^3 \left(\sqrt{2} - 2 \tan \left(\underline{Z} \right) \right) \left(\tan \left(\underline{Z} \right)^2 + 1 \right) \right) + \sqrt{2} \ln (2) + 6\sqrt{2} c_1 + 4\underline{Z} \right) \right)$$

✓ Solution by Mathematica

Time used: 0.191 (sec). Leaf size: 62

Solve
$$\left[\frac{1}{3}\left(\sqrt{2}\arctan\left(\frac{\frac{y(x)}{x}+1}{\sqrt{2}}\right) + \log\left(\frac{y(x)^2}{x^2} + \frac{2y(x)}{x} + 3\right) + \log\left(\frac{y(x)}{x}\right)\right) = -\log(x) + c_1, y(x)\right]$$

1.28 problem 28

Internal problem ID [3173]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 28.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type ['y=G(x,y')']

$$-\sin(y)^{2} + x\sin(2y)y' = -x^{2}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

 $dsolve((x^2-sin(y(x))^2)+(x*sin(2*y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arcsin\left(\sqrt{-c_1x - x^2}\right)$$

$$y(x) = -\arcsin\left(\sqrt{-c_1x - x^2}\right)$$

✓ Solution by Mathematica

Time used: 6.502 (sec). Leaf size: 39

DSolve[(x^2-Sin[y[x]]^2)+(x*Sin[2*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\arcsin\left(\sqrt{-x(x+2c_1)}\right)$$

$$y(x) \to \arcsin\left(\sqrt{-x(x+2c_1)}\right)$$

1.29 problem 29

Internal problem ID [3174]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 29.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, [_Abel, '2nd type', 'cl

$$y(2x - y + 2) + 2(-y + x)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 73

 $\label{eq:dsolve} $$ dsolve(y(x)*(2*x-y(x)+2)+2*(x-y(x))*diff(y(x),x)=0,y(x), singsol=all) $$ $$$

$$y(x) = \frac{\left(c_1 e^x x + \sqrt{e^{2x} c_1^2 x^2 + c_1 e^x}\right) e^{-x}}{c_1}$$
$$y(x) = -\frac{\left(-c_1 e^x x + \sqrt{e^{2x} c_1^2 x^2 + c_1 e^x}\right) e^{-x}}{c_1}$$

✓ Solution by Mathematica

Time used: 43.224 (sec). Leaf size: 125

 $DSolve[y[x]*(2*x-y[x]+2)+2*(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x - e^{-x} \sqrt{e^x (e^x x^2 - e^{2c_1})}$$

 $y(x) \to x + e^{-x} \sqrt{e^x (e^x x^2 - e^{2c_1})}$
 $y(x) \to x - e^{-x} \sqrt{e^{2x} x^2}$
 $y(x) \to e^{-x} \sqrt{e^{2x} x^2} + x$

1.30 problem 30

Internal problem ID [3175]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 30.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class B']]

$$4yx + 3y^2 + x(x + 2y)y' = x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 53

 $\label{eq:dsolve} $$ dsolve((4*x*y(x)+3*y(x)^2-x)+x*(x+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$ $$$

$$y(x) = \frac{-x^3 + \sqrt{x^6 + x^5 - 4c_1x}}{2x^2}$$

$$y(x) = -\frac{x^3 + \sqrt{x^6 + x^5 - 4c_1x}}{2x^2}$$

✓ Solution by Mathematica

Time used: 0.621 (sec). Leaf size: 80

$$y(x) \to -\frac{x^4 + \sqrt{x^2}\sqrt{x^6 + x^5 + 4c_1x}}{2x^3}$$

$$y(x) \to -\frac{x}{2} + \frac{\sqrt{x^2}\sqrt{x^6 + x^5 + 4c_1x}}{2x^3}$$

1.31 problem 31

Internal problem ID [3176]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 31.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x),G(y)]']]

$$y + x(y^2 + \ln(x))y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 275

 $dsolve((y(x))+x*(y(x)^2+ln(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$\begin{split} y(x) &= \frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} - \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ y(x) &= -\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{4} + \frac{\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &- \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)}{2} \\ y(x) &= -\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{4} + \frac{\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{i\sqrt{3}\left(\frac{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}{2} + \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}}\right)} \\ &+ \frac{2\ln\left(x\right)}{\left(-12c_1 + 4\sqrt{4\ln\left(x\right)^3 + 9c_1^2}\right)^{\frac{1}{3}}} \\ &+ \frac{2\ln\left(x\right$$

✓ Solution by Mathematica

Time used: 1.211 (sec). Leaf size: 272

DSolve[(y[x])+x*(y[x]^2+Log[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}{\sqrt[3]{2}} - \frac{\sqrt[3]{2\log(x)}}{\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}$$

$$y(x) \to \frac{\sqrt[3]{2}(2 + 2i\sqrt{3})\log(x) + i2^{2/3}(\sqrt{3} + i)\left(\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}\right)^{2/3}}{4\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}$$

$$y(x) \to \frac{(1 - i\sqrt{3})\log(x)}{2^{2/3}\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}} - \frac{(1 + i\sqrt{3})\sqrt[3]{\sqrt{4\log^3(x) + 9c_1^2 + 3c_1}}}{2\sqrt[3]{2}}$$

$$y(x) \to 0$$

1.32problem 32

Internal problem ID [3177]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 32.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x),G(x)]'], [_Abel

$$y + (3yx^2 - x) y' = -x^2 - 2x$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

 $dsolve((x^2+2*x+y(x))+(3*x^2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{-1 + \sqrt{-12\ln(x)x^2 - 6c_1x^2 - 6x^3 + 1}}{3x}$$
$$y(x) = \frac{1 + \sqrt{-12\ln(x)x^2 - 6c_1x^2 - 6x^3 + 1}}{3x}$$

Solution by Mathematica

Time used: 0.543 (sec). Leaf size: 96

 $DSolve[(x^2+2*x+y[x])+(3*x^2*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \to \frac{1 - \sqrt{\frac{1}{x^2}} x \sqrt{-6x^3 - 12x^2 \log(x) + 9c_1 x^2 + 1}}{3x}$$
$$y(x) \to \frac{1 + \sqrt{\frac{1}{x^2}} x \sqrt{-6x^3 - 12x^2 \log(x) + 9c_1 x^2 + 1}}{3x}$$

$$y(x) \to \frac{1 + \sqrt{\frac{1}{x^2}}x\sqrt{-6x^3 - 12x^2\log(x) + 9c_1x^2 + 1}}{3x}$$

1.33 problem 33

Internal problem ID [3178]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 33.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y^{2} + (yx + y^{2} - 1) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 24

 $dsolve((y(x)^2)+(x*y(x)+y(x)^2-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{\text{RootOf}(-e^2 - Z - 2x e^{-Z} + 2c_1 + 2 Z)}$$

✓ Solution by Mathematica

Time used: 0.15 (sec). Leaf size: 30

 $DSolve[(y[x]^2)+(x*y[x]+y[x]^2-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$x = \frac{\log(y(x)) - \frac{y(x)^2}{2}}{y(x)} + \frac{c_1}{y(x)}, y(x)$$

1.34 problem 34

Internal problem ID [3179]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 34.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [rational]

$$3y^2 + x(x^2 + 3y^2 + 6y)y' = -3x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 21

 $dsolve(3*(x^2+y(x)^2)+x*(x^2+3*y(x)^2+6*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$c_1 + e^{y(x)} \left(\frac{x^3}{3} + y(x)^2 x \right) = 0$$

✓ Solution by Mathematica

Time used: 0.149 (sec). Leaf size: 26

Solve
$$\left[x^3 e^{y(x)} + 3x e^{y(x)} y(x)^2 = c_1, y(x)\right]$$

1.35 problem 35

Internal problem ID [3180]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 35.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$2y(x+y+2) + (y^2 - x^2 - 4x - 1)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 55

 $dsolve(2*y(x)*(x+y(x)+2)+(y(x)^2-x^2-4*x-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -x - 2 + \frac{c_1}{2} - \frac{\sqrt{c_1^2 - 4c_1x - 8c_1 + 12}}{2}$$

$$y(x) = -x - 2 + \frac{c_1}{2} + \frac{\sqrt{c_1^2 - 4c_1x - 8c_1 + 12}}{2}$$

✓ Solution by Mathematica

Time used: 0.462 (sec). Leaf size: 74

$$y(x) \to \frac{1}{2} \left(-2x - \sqrt{4(-4+c_1)x - 4 + c_1^2} - c_1 \right)$$

$$y(x) \to \frac{1}{2} \left(-2x + \sqrt{4(-4+c_1)x - 4 + c_1^2} - c_1 \right)$$

$$y(x) \to 0$$

1.36 problem 36

Internal problem ID [3181]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 36.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, _Bernoulli]

$$y^2 + 2y'y = -2x - 2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve((2+y(x)^2+2*x)+(2*y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \sqrt{c_1 e^{-x} - 2x}$$

$$y(x) = -\sqrt{c_1 \mathrm{e}^{-x} - 2x}$$

✓ Solution by Mathematica

Time used: 3.531 (sec). Leaf size: 43

 $DSolve[(2+y[x]^2+2*x)+(2*y[x])*y'[x] == 0, y[x], x, Include Singular Solutions \rightarrow True]$

$$y(x) \rightarrow -\sqrt{-2x + c_1 e^{-x}}$$

$$y(x) \to \sqrt{-2x + c_1 e^{-x}}$$

1.37 problem 37

Internal problem ID [3182]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 37.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [rational]

$$2xy^{2} - y + (y^{2} + x + y) y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

 $dsolve((2*x*y(x)^2-y(x))+(y(x)^2+x+y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{\text{RootOf}(x^2 e^{-Z} + e^2 - Z + e^{-Z} c_1 + Z e^{-Z} - x)}$$

✓ Solution by Mathematica

Time used: 0.18 (sec). Leaf size: 22

Solve
$$\left[x^2 - \frac{x}{y(x)} + y(x) + \log(y(x)) = c_1, y(x)\right]$$

1.38 problem 38

Internal problem ID [3183]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 38.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_rational, [_Abel, '2nd type', 'class A']]

$$y(y+x) + (x+2y-1)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 93

dsolve(y(x)*(x+y(x))+(x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = -\frac{\left(e^{x}x - e^{x} - \sqrt{x^{2}e^{2x} - 2e^{2x}x + e^{2x} - 4c_{1}e^{x}}\right)e^{-x}}{2}$$
$$y(x) = -\frac{\left(e^{x}x - e^{x} + \sqrt{x^{2}e^{2x} - 2e^{2x}x + e^{2x} - 4c_{1}e^{x}}\right)e^{-x}}{2}$$

✓ Solution by Mathematica

Time used: 11.91 (sec). Leaf size: 80

DSolve[y[x]*(x+y[x])+(x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) o \frac{1}{2} \left(-x - \frac{\sqrt{e^x(x-1)^2 + 4c_1}}{\sqrt{e^x}} + 1 \right)$$

$$y(x) o rac{1}{2} \Biggl(-x + rac{\sqrt{e^x(x-1)^2 + 4c_1}}{\sqrt{e^x}} + 1 \Biggr)$$

1.39 problem 39

Internal problem ID [3184]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 39.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [' $y=_G(x,y')$ ']

$$2x(x^{2} - \sin(y) + 1) + (x^{2} + 1)\cos(y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

 $dsolve(2*x*(x^2-sin(y(x))+1)+(x^2+1)*cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\arcsin(\ln(x^2+1)x^2 + c_1x^2 + \ln(x^2+1) + c_1)$$

✓ Solution by Mathematica

Time used: 7.478 (sec). Leaf size: 25

 $DSolve[2*x*(x^2-Sin[y[x]]+1)+(x^2+1)*Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow Tolumber[2*x*(x^2-Sin[y[x]]+1)+(x^2+1)*Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow Tolumber[2*x*(x^2-Sin[x])+(x^2-Sin[x$

$$y(x) \rightarrow -\arcsin\left(\left(x^2+1\right)\left(\log\left(x^2+1\right)+8c_1\right)\right)$$

1.40 problem 41

Internal problem ID [3185]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 41.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Riccati]

$$y^2 + y - xy' = -x^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 10

 $dsolve((x^2+y(x)+y(x)^2)-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \tan(x + c_1) x$$

✓ Solution by Mathematica

Time used: 0.207 (sec). Leaf size: 12

 $DSolve[(x^2+y[x]+y[x]^2)-x*y'[x] == 0, y[x], x, Include Singular Solutions \ -> \ True]$

$$y(x) \to x \tan(x + c_1)$$

1.41 problem 42

Internal problem ID [3186]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 42.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _dAlembert]

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 58

 $dsolve((x-sqrt(x^2+y(x)^2))+(y(x)-sqrt(x^2+y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)$

$$-c_{1} + \frac{\sqrt{x^{2} + y(x)^{2}}}{x^{2}y(x)} + \frac{1}{xy(x)} + \frac{1}{y(x)^{2}} + \frac{1}{x^{2}} + \frac{\sqrt{x^{2} + y(x)^{2}}}{xy(x)^{2}} = 0$$

✓ Solution by Mathematica

Time used: 0.834 (sec). Leaf size: 34

$$y(x) \to -\frac{e^{c_1}(2x + e^{c_1})}{2(x + e^{c_1})}$$

$$y(x) \to 0$$

1.42 problem 43

Internal problem ID [3187]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 43.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y\sqrt{y^2+1} + (x\sqrt{y^2+1} - y)y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve((y(x)*sqrt(1+y(x)^2))+(x*sqrt(1+y(x)^2)-y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$x - \frac{\sqrt{y(x)^2 + 1} + c_1}{y(x)} = 0$$

✓ Solution by Mathematica

Time used: 0.479 (sec). Leaf size: 82

$$y(x) \to \frac{c_1 x - \sqrt{x^2 - 1 + c_1^2}}{x^2 - 1}$$

$$y(x) o \frac{\sqrt{x^2 - 1 + c_1^2} + c_1 x}{x^2 - 1}$$

$$y(x) \to 0$$

$$y(x) \to -i$$

$$y(x) \to i$$

1.43 problem 44

Internal problem ID [3188]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 44.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ G'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ type',\ `class\ G'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ t$

$$y^2 - \left(yx + x^3\right)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 35

 $dsolve((y(x)^2)-(x*y(x)+x^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \left(-x - \sqrt{x^2 + c_1}\right)x$$

$$y(x) = \left(-x + \sqrt{x^2 + c_1}\right)x$$

✓ Solution by Mathematica

Time used: 0.551 (sec). Leaf size: 67

 $DSolve[(y[x]^2)-(x*y[x]+x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -x^2 \left(1 + \sqrt{\frac{1}{x^3}} \sqrt{x(x^2 + c_1)}\right)$$

$$y(x) \to x^2 \left(-1 + \sqrt{\frac{1}{x^3}} \sqrt{x(x^2 + c_1)}\right)$$

$$y(x) \to 0$$

1.44 problem 45

Internal problem ID [3189]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 45.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D']]

$$y - 2x^3 \tan\left(\frac{y}{x}\right) - xy' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 15

 $dsolve(y(x)-2*x^3*tan(y(x)/x)-x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arcsin\left(c_1 \mathrm{e}^{-x^2}\right) x$$

✓ Solution by Mathematica

Time used: 59.679 (sec). Leaf size: 23

 $DSolve[y[x]-2*x^3*Tan[y[x]/x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to x \arcsin\left(e^{-x^2+c_1}\right)$$

$$y(x) \to 0$$

1.45 problem 46

Internal problem ID [3190]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 46.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ G'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ ty$

$$2y^{2}x^{2} + y + (x^{3}y - x)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 23

 $\label{eq:dsolve} \\ \text{dsolve}((2*x^2*y(x)^2+y(x))+(x^3*y(x)-x)*diff(y(x),x)=0,y(x), \text{ singsol=all}) \\$

$$y(x) = x e^{-\text{LambertW}(-x^3 e^{-3c_1}) - 3c_1}$$

✓ Solution by Mathematica

Time used: 2.365 (sec). Leaf size: 33

 $DSolve[(2*x^2*y[x]^2+y[x])+(x^3*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) o -rac{W\left(e^{-1+rac{9c_1}{2^{2/3}}}x^3
ight)}{x^2}$$

$$y(x) \to 0$$

1.46 problem 47

Internal problem ID [3191]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 47.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$y^2 + (yx + \tan(yx))y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 18

 $dsolve((y(x)^2)+(x*y(x)+tan(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\text{RootOf}(\underline{Zc_1 \sin(\underline{Z}) - x})}{x}$$

✓ Solution by Mathematica

Time used: 0.271 (sec). Leaf size: 14

DSolve[(y[x]^2)+(x*y[x]+Tan[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

 $\operatorname{Solve}[y(x)\sin(xy(x))=c_1,y(x)]$

1.47 problem 48

Internal problem ID [3192]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 48.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$2y^{4}x - y + (4y^{3}x^{3} - x)y' = 0$$

X Solution by Maple

 $dsolve((2*x*y(x)^4-y(x))+(4*x^3*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(2*x*y[x]^4-y[x])+(4*x^3*y[x]^3-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

Not solved

1.48 problem 49

Internal problem ID [3193]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 49.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational]

$$y^{3} + y + (x^{3} + y^{2} - x) y' = -x^{2}$$

X Solution by Maple

 $dsolve((x^2+y(x)^3+y(x))+(x^3+y(x)^2-x)*diff(y(x),x)=0,y(x), singsol=all)$

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[(x^2+y[x]^3+y[x])+(x^3+y[x]^2-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Not solved

1.49 problem 50

Internal problem ID [3194]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 50.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y(y^2 + 1) + x(y^2 - x + 1) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 153

 $\label{eq:dsolve} \\ \text{dsolve}((y(x)*(y(x)^2+1))+(x*(y(x)^2-x+1))*diff(y(x),x)=0,y(x), \text{ singsol=all}) \\$

$$-\sqrt{-\frac{2x^{2}}{(x-1)^{2}\left(\frac{1}{y(x)^{2}}-\frac{1}{x-1}\right)}} \operatorname{arctanh}\left(\frac{\sqrt{-\frac{2x^{2}}{(x-1)^{2}\left(\frac{1}{y(x)^{2}}-\frac{1}{x-1}\right)}}(x-1)}}{\sqrt{\frac{2x+\frac{2}{y(x)^{2}}-\frac{1}{x-1}}{x-1}}}\right) + \sqrt{\frac{2x+\frac{2}{\frac{1}{y(x)^{2}}-\frac{1}{x-1}}-2}{x-1}}}{x-1}$$

$$= 0$$

✓ Solution by Mathematica

Time used: 0.077 (sec). Leaf size: 34

Solve
$$\left[\frac{1}{2}\left(-\arctan(y(x)) - \frac{1}{y(x)}\right) + \frac{1}{2xy(x)} = c_1, y(x)\right]$$

1.50 problem 51

Internal problem ID [3195]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 51.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], [_Abel, '2nd type', 'c

$$y^2 + (-y + e^x)y' = 0$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 16

 $dsolve((y(x)^2)+(exp(x)-y(x))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -e^x \text{LambertW} \left(-c_1 e^{-x} \right)$$

✓ Solution by Mathematica

Time used: 6.706 (sec). Leaf size: 306

 $DSolve[(y[x]^2)+(Exp[x]-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$Solve \begin{bmatrix} \frac{1}{9} 2^{2/3} \left(\frac{\left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right) \left(\frac{e^x (y(x) + 2e^x)}{\sqrt[3]{e^{3x}} (e^x - y(x))} + 1\right) \left(\left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} - 1\right) \log \left(2^{2/3} \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right)\right) + \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right) \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right) + \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}} + 2\right) + \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}}{\sqrt[3]{e^{3x}}} + 2\right) + \left(\frac{e^x - \frac{3e^{2x}}{e^x - y(x)}} + 2\right) + \left(\frac{e^x - \frac{3e^{2$$

1.51 problem 52

Internal problem ID [3196]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 52.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ G'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ ty$

$$y^{2}x^{2} - 2y + (x^{3}y - x)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 18

 $dsolve((x^2*y(x)^2-2*y(x))+(x^3*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = -\frac{1}{\text{LambertW}\left(-\frac{c_1}{x}\right)x^2}$$

✓ Solution by Mathematica

Time used: 6.74 (sec). Leaf size: 35

$$y(x)
ightarrow -rac{1}{x^2W\left(rac{e^{-1+rac{9c_1}{2^2/3}}}{x}
ight)}$$

$$y(x) \to 0$$

1.52 problem 53

Internal problem ID [3197]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 53.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$2x^{3}y + y^{3} - (x^{4} + 2xy^{2})y' = 0$$

✓ Solution by Maple

Time used: 0.5 (sec). Leaf size: 148

 $dsolve((2*x^3*y(x)+y(x)^3)-(x^4+2*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{x^{\frac{3}{2}}\operatorname{RootOf}\left(-16 + x^{7}c_{1}\underline{Z}^{12} - 4c_{1}x^{\frac{11}{2}}\underline{Z}^{10} + 6c_{1}x^{4}\underline{Z}^{8} + \left(128x^{\frac{9}{2}} - 4c_{1}x^{\frac{5}{2}}\right)\underline{Z}^{6} + \left(-192x^{3} + c_{1}x\right)\underline{Z}^{10} + 6c_{1}x^{4}\underline{Z}^{8} + \left(128x^{\frac{9}{2}} - 4c_{1}x^{\frac{5}{2}}\right)\underline{Z}^{6} + \left(-192x^{3} + c_{1}x\right)\underline{Z}^{10} + 6c_{1}x^{4}\underline{Z}^{8} + \left(128x^{\frac{9}{2}} - 4c_{1}x^{\frac{5}{2}}\right)\underline{Z}^{6} + \left(-192x^{3} + c_{1}x\right)\underline{Z}^{10}$$

✓ Solution by Mathematica

Time used: 60.151 (sec). Leaf size: 2023

$$y(x) \rightarrow \frac{48x^3 + \frac{e^{4c_1}x^2}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}} + \sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}}$$

$$y(x) = \sqrt{48x^3 + \frac{e^{4c_1}x^2}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}} + \sqrt[3]{-3456e^{2c_1}x^7}$$

$$y(x) \rightarrow \underbrace{ \sqrt{i(\sqrt{3}+i)e^{4c_1}x^2 + 96x^3} \sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)}_{\sqrt[3]{-2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}x^2 + e^{2c_1}\right)}_{\sqrt[3]{-2c_1}x^7 + e^{2c_1}x^7 + e^{$$

$$y(x) = \sqrt{\frac{i(\sqrt{3}+i)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} - 2e^{2c_1}x\left(48e^{4c_1}x^2 + e^{4c_1}x^3 + e^$$

$$y(x) \rightarrow \frac{\sqrt{-i\left(\sqrt{3}-i\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3}+i\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3}+i\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3}+i\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3}+i\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3}+i\right)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i\left(\sqrt{3}+i\right)e^{4c_1}x^2 + e^{4c_1}x^2 + e^{4c_1$$

$$y(x) = \sqrt{\frac{-i(\sqrt{3}-i)e^{4c_1}x^2 + 96x^3\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i(\sqrt{3}+i)}}{\sqrt[3]{-3456e^{2c_1}x^7 + 144e^{4c_1}x^5 - e^{6c_1}x^3 + 192\sqrt{3}\sqrt{-e^{4c_1}x^{12}\left(-108x^2 + e^{2c_1}\right)} + i(\sqrt{3}+i)}}$$

1.53 problem 54

Internal problem ID [3198]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 54.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y\cos(x) - \sin(x) y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 13

dsolve((1+y(x)*cos(x))-(sin(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = (-\cot(x) + c_1)\sin(x)$$

✓ Solution by Mathematica

Time used: 0.042 (sec). Leaf size: 15

DSolve[(1+y[x]*Cos[x])-(Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\cos(x) + c_1\sin(x)$$

1.54 problem 55

Internal problem ID [3199]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 55.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_quadrature]

$$\left(\sin\left(y\right)^{2} + x\cot\left(y\right)\right)y' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 1223

 $dsolve((sin(y(x))^2+x*cot(y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \arctan\left(-\frac{\sqrt{6\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} - \frac{72x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}}}{6}, \frac{\left(6\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} - \frac{72x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}}{216x}\right)}{6}$$

$$y(x) = \arctan\left(\frac{\sqrt{6\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} - \frac{72x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}}}{6}\right)^{\frac{1}{3}}$$

$$-\frac{\left(6\left(108x^{2}+12\sqrt{12x^{6}+81x^{4}}\right)^{\frac{1}{3}}-\frac{72x^{2}}{\left(108x^{2}+12\sqrt{12x^{6}+81x^{4}}\right)^{\frac{3}{2}}}\right)^{\frac{3}{2}}}{216x}$$

$$y(x) = \arctan \left(-\frac{\sqrt{-3\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} + \frac{36x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}} - 18i\sqrt{3} \left(\frac{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}{6} - \frac{18i\sqrt{3}}{6} \right)}{6} \right)$$

$$y(x)$$

$$y(x) = \arctan \left(\frac{\sqrt{-3\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}} + \frac{36x^2}{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}} - 18i\sqrt{3} \left(\frac{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}{6} + \frac{6}{6} \right)}{6} + \frac{18i\sqrt{3} \left(\frac{\left(108x^2 + 12\sqrt{12x^6 + 81x^4}\right)^{\frac{1}{3}}}{6} + \frac{18i\sqrt{3}}{6} + \frac{18i\sqrt{3}}{$$

$$-\frac{\left(-3 \left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{1}{3}}+\frac{36 x^2}{\left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{1}{3}}}-18 i \sqrt{3} \left(\frac{\left(108 x^2+12 \sqrt{12 x^6+81 x^4}\right)^{\frac{1}{3}}}{6}+\frac{108 x^2+12 \sqrt{12 x^6+81 x^4}}{6}\right)^{\frac{1}{3}}}{68}+\frac{108 x^2+12 \sqrt{12 x^6+81 x^4}}{6}$$

✓ Solution by Mathematica

Time used: 0.249 (sec). Leaf size: 1647

DSolve[(Sin[y[x]]^2+x*Cot[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow -\arccos\left(-\sqrt{-\frac{\sqrt[3]{\frac{2}{3}}x^2}{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}} + \frac{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}{\sqrt[3]{2}3^{2/3}} + 1\right)$$

$$y(x) \to \arccos\left(-\sqrt{-\frac{\sqrt[3]{\frac{2}{3}}x^2}{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}} + \frac{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}{\sqrt[3]{2}3^{2/3}} + 1\right)$$

$$y(x) \to -\arccos\left(\sqrt{-\frac{\sqrt[3]{\frac{2}{3}}x^2}{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}} + \frac{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}{\sqrt[3]{2}3^{2/3}} + 1\right)$$

$$y(x) \to \arccos\left(\sqrt{-\frac{\sqrt[3]{\frac{2}{3}}x^2}{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}} + \frac{\sqrt[3]{\sqrt{3}\sqrt{x^4(4x^2+27)}-9x^2}}{\sqrt[3]{2}3^{2/3}} + 1\right)$$

$$y(x) \rightarrow -\arccos\left(-\sqrt{\frac{\left(\sqrt{3}-3i\right)x^{2}}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}} + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}-2^{2/3}\right)}\right)$$

$$y(x) \rightarrow \arccos\left(-\sqrt{\frac{\left(\sqrt{3}-3i\right)x^2}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^4\left(4x^2+27\right)}-9x^2}}} + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^4\left(4x^2+27\right)}-9x^2}-2^{2/3}\sqrt[3]{x^4\left(4x^2+27\right)}\right)\right)$$

$$y(x) \rightarrow -\arccos\left(\sqrt{\frac{\left(\sqrt{3}-3i\right)x^{2}}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}}+\frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^{4}\left(4x^{2}+27\right)}-9x^{2}}-2^{2/3}x^{2}\right)}\right)$$

$$y(x) \rightarrow \arccos\left(\sqrt{\frac{\left(\sqrt{3}-3i\right)x^2 - 69}{2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^4\left(4x^2+27\right)}-9x^2}} + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^4\left(4x^2+27\right)}-9x^2}-2^{2/3}\sqrt[3]{3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^4\left(4x^2+27\right)}-9x^2}}\right)\right) + \frac{1}{12}\left(-i2^{2/3}3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^4\left(4x^2+27\right)}-9x^2}-2^{2/3}\sqrt[3]{3^{5/6}\sqrt[3]{\sqrt{3}\sqrt{x^4\left(4x^2+27\right)}-9x^2}}\right)$$

1.55 problem 56

Internal problem ID [3200]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 56.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [separable]

$$-(y-2yx)y'=-1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 33

dsolve(1-(y(x)-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

$$y(x) = \sqrt{-\ln(-1+2x) + c_1}$$
$$y(x) = -\sqrt{-\ln(-1+2x) + c_1}$$

✓ Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 45

 $DSolve[1-(y[x]-2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{-\log(1-2x) + 2c_1}$$

$$y(x) \to \sqrt{-\log(1-2x) + 2c_1}$$

1.56 problem 57

Internal problem ID [3201]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 57.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$-(1+2x\tan(y))y'=-1$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 41

dsolve(1-(1+2*x*tan(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

$$\frac{c_1}{2\cos(2y(x)) + 2} + x - \frac{2y(x) + \sin(2y(x))}{2\cos(2y(x)) + 2} = 0$$

✓ Solution by Mathematica

Time used: 0.145 (sec). Leaf size: 36

DSolve[1-(1+2*x*Tan[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[x = \left(\frac{y(x)}{2} + \frac{1}{4}\sin(2y(x))\right)\sec^2(y(x)) + c_1\sec^2(y(x)), y(x)\right]$$

1.57 problem 58

Internal problem ID [3202]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 58.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational]

$$\left(y^3 + \frac{x}{y}\right)y' = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

 $dsolve((y(x)^3+x/y(x))*diff(y(x),x)=1,y(x), singsol=all)$

$$-c_1 y(x) + x - \frac{y(x)^4}{3} = 0$$

Time used: 0.107 (sec). Leaf size: 997

DSolve[$(y[x]^3+x/y[x])*y'[x]==1,y[x],x,IncludeSingularSolutions -> True$]

$$\begin{split} y(x) & \to \frac{1}{2} \sqrt{\frac{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}{\sqrt[3]{2}}} - \frac{4\sqrt[3]{2}x}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} \\ & - \frac{1}{2} \sqrt{\frac{4\sqrt[3]{2}x}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}{\sqrt[3]{2}} - \frac{6c_1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} \\ & + \frac{1}{2} \sqrt{\frac{4\sqrt[3]{2}x}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}{\sqrt[3]{2}} - \frac{6c_1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} \\ & + \frac{1}{2} \sqrt{\frac{4\sqrt[3]{2}x}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}}{\sqrt[3]{2}} - \frac{6c_1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{6c_1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 81c_1^4}}}} - \frac{1}{\sqrt[3]{9c_1^2 - \sqrt{256x^3 + 8$$

1.58 problem 59

Internal problem ID [3203]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 59.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_exponential_symmetries]]

$$\left(x - y^2\right)y' = -1$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 24

 $dsolve(1+(x-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$(x - y(x)^{2} + 2y(x) - 2 - e^{-y(x)}c_{1} = 0)$$

✓ Solution by Mathematica

Time used: 0.116 (sec). Leaf size: 24

DSolve $[1+(x-y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]$

Solve
$$[x = y(x)^2 - 2y(x) + c_1 e^{-y(x)} + 2, y(x)]$$

1.59 problem 60

Internal problem ID [3204]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 60.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational]

$$y^{2} + (yx + y^{2} - 1) y' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 24

 $dsolve(y(x)^2+(x*y(x)+y(x)^2-1)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = e^{\text{RootOf}(-e^2 - Z - 2x e^{-Z} + 2c_1 + 2 Z)}$$

✓ Solution by Mathematica

Time used: 0.135 (sec). Leaf size: 30

 $DSolve[y[x]^2+(x*y[x]+y[x]^2-1)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$x = \frac{\log(y(x)) - \frac{y(x)^2}{2}}{y(x)} + \frac{c_1}{y(x)}, y(x)$$

1.60 problem 61

Internal problem ID [3205]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 61.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, '_with_symmetry_[F(x)*G(y),0]']]

$$y - (e^y + 2yx - 2x)y' = 0$$

✓ Solution by Maple

Time used: 0.047 (sec). Leaf size: 62

dsolve(y(x)=(exp(y(x))+2*x*y(x)-2*x)*diff(y(x),x),y(x), singsol=all)

$$y(x) = \text{RootOf}\left(\underline{Z^2}x - c_1 + \underline{Z} + e^{\text{RootOf}(-x e^2 - Z^2 + \underline{Z}e^{-Z} + c_1 - e^{-Z})}\right) e^{-\text{RootOf}(-x e^2 - Z^2 + \underline{Z}e^{-Z} + c_1 - e^{-Z})}$$

✓ Solution by Mathematica

Time used: 0.294 (sec). Leaf size: 34

DSolve[y[x] == (Exp[y[x]] +2*x*y[x] -2*x)*y'[x],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[x = \frac{e^{y(x)}(-y(x)-1)}{y(x)^2} + \frac{c_1 e^{2y(x)}}{y(x)^2}, y(x) \right]$$

1.61 problem 62

Internal problem ID [3206]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 62.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(2x+3)y' - y = \sqrt{2x+3}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve((2*x+3)*diff(y(x),x)=y(x)+sqrt(2*x+3),y(x), singsol=all)

$$y(x) = \left(\frac{\ln(2x+3)}{2} + c_1\right)\sqrt{2x+3}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 29

DSolve[(2*x+3)*y'[x]==y[x]+Sqrt[2*x+3],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{2}\sqrt{2x+3}(\log(2x+3)+2c_1)$$

1.62 problem 63

Internal problem ID [3207]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 63.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y + \left(e^y y^2 - x\right) y' = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 16

 $dsolve(y(x)+(y(x)^2*exp(y(x))-x)*diff(y(x),x)=0,y(x), singsol=all)$

$$x - (-e^{y(x)} + c_1) y(x) = 0$$

✓ Solution by Mathematica

Time used: 0.195 (sec). Leaf size: 19

 $DSolve[y[x]+(y[x]^2*Exp[y[x]]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

Solve
$$\left[x = -e^{y(x)}y(x) + c_1y(x), y(x)\right]$$

1.63 problem 64

Internal problem ID [3208]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 64.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - 3y\tan(x) = 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 30

dsolve(diff(y(x),x)=1+3*y(x)*tan(x),y(x), singsol=all)

$$y(x) = \frac{9\sin(x) + \sin(3x) + 12c_1}{3\cos(3x) + 9\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.049 (sec). Leaf size: 26

DSolve[y'[x]==1+3*y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{12} \sec^3(x) (9\sin(x) + \sin(3x) + 12c_1)$$

1.64 problem 65

Internal problem ID [3209]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 65.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$(\cos(x) + 1)y' - \sin(x)(\sin(x) + \sin(x)\cos(x) - y) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 16

dsolve((1+cos(x))*diff(y(x),x)=sin(x)*(sin(x)+sin(x)*cos(x)-y(x)),y(x), singsol=all)

$$y(x) = (-\sin(x) + x + c_1)(\cos(x) + 1)$$

✓ Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 24

DSolve[(1+Cos[x])*y'[x]==Sin[x]*(Sin[x]+Sin[x]*Cos[x]-y[x]),y[x],x,IncludeSingularSolution

$$y(x) \to \cos^2\left(\frac{x}{2}\right)(2x - 2\sin(x) + c_1)$$

1.65 problem 66

Internal problem ID [3210]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 66.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [linear]

$$y' - \left(\sin\left(x\right)^2 - y\right)\cos\left(x\right) = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

 $dsolve(diff(y(x),x)=(sin(x)^2-y(x))*cos(x),y(x), singsol=all)$

$$y(x) = \frac{5}{2} + e^{-\sin(x)}c_1 - \frac{\cos(2x)}{2} - 2\sin(x)$$

✓ Solution by Mathematica

Time used: 0.147 (sec). Leaf size: 30

 $DSolve[y'[x] == (Sin[x]^2-y[x])*Cos[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -2\sin(x) - \frac{1}{2}\cos(2x) + c_1e^{-\sin(x)} + \frac{5}{2}$$

1.66 problem 68

Internal problem ID [3211]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 68.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_linear]

$$(x+1)y' - y = x(x+1)^2$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

 $dsolve((1+x)*diff(y(x),x)-y(x)=x*(1+x)^2,y(x), singsol=all)$

$$y(x) = \left(\frac{x^2}{2} + c_1\right)(x+1)$$

✓ Solution by Mathematica

Time used: 0.029 (sec). Leaf size: 20

 $DSolve[(1+x)*y'[x]-y[x]==x*(1+x)^2,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{2}(x+1)(x^2+2c_1)$$

1.67 problem 69

Internal problem ID [3212]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 69.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_exact, _rational, [_1st_order, '_with_symmetry_[F(x)*G(y),0]

$$y + (x - y(y+1)^2) y' = -1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

 $dsolve((1+y(x))+(x-y(x)*(1+y(x))^2)* diff(y(x),x)=0,y(x), singsol=all)$

$$x - \frac{\frac{y(x)^4}{4} + \frac{2y(x)^3}{3} + \frac{y(x)^2}{2} + c_1}{y(x) + 1} = 0$$

Time used: 33.714 (sec). Leaf size: 1594

 $DSolve[(1+y[x])+(x-y[x]*(1+y[x])^2)*y'[x]==0,y[x],x,IncludeSingularSolutions] -> True]$

$$y(x) \rightarrow \frac{1}{6} \left(-\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3 + 1 + 12c_1}} + 6\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3 + 1 + 12c_1}} + 6\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3 + 1 + 12c_1}} + 6\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3 + 1 + 12c_1}} \right)$$

$$y(x) = \frac{1}{6} \left(-\sqrt{\frac{-24x + 6 + 72c_1}{\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3 + 1 + 12c_1}} + 6\sqrt[3]{27x^2 - \frac{1}{432}}\sqrt{186624(27x^2 + 1 + 12c_1)^2 - 4(-144x + 36 + 432c_1)^3 + 1 + 12c_1}} \right)$$

$$-3\sqrt{-\frac{3\left(32x+\frac{64}{27}\right)}{4\sqrt{\frac{\frac{-24x+6+72c_{1}}{\sqrt[3]{27x^{2}-\frac{1}{432}\sqrt{186624\left(27x^{2}+1+12c_{1}\right)^{2}-4(-144x+36+432c_{1})^{3}+1+12c_{1}}}}}}+6\sqrt[3]{2}}$$

84

1.68 problem 71.1

Internal problem ID [3213]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 71.1.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Riccati]

$$y' + y^2 = x^2 + 1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 25

 $dsolve(diff(y(x),x)+y(x)^2=1+x^2,y(x), singsol=all)$

$$y(x) = x - rac{\mathrm{e}^{-x^2}}{c_1 - rac{\sqrt{\pi} \; \mathrm{erf}(x)}{2}}$$

✓ Solution by Mathematica

Time used: 0.136 (sec). Leaf size: 36

DSolve[y'[x]+y[x]^2==1+x^2,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to x + \frac{2e^{-x^2}}{\sqrt{\pi} \text{erf}(x) + 2c_1}$$

$$y(x) \to x$$

1.69 problem 72

Internal problem ID [3214]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 72.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Bernoulli]

$$3xy' - 3xy^4 \ln(x) - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 234

 $dsolve(3*x*diff(y(x),x)-3*x*y(x)^4*ln(x)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{6\ln(x)x^2 - 3x^2 - 4c_1}$$

$$y(x) = -\frac{\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{2(6\ln(x)x^2 - 3x^2 - 4c_1)} - \frac{i\sqrt{3}\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{2(6\ln(x)x^2 - 3x^2 - 4c_1)}$$

$$y(x) = -\frac{\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{2(6\ln(x)x^2 - 3x^2 - 4c_1)} + \frac{i\sqrt{3}\left(-4x(6\ln(x)x^2 - 3x^2 - 4c_1)^2\right)^{\frac{1}{3}}}{12\ln(x)x^2 - 6x^2 - 8c_1}$$

Time used: 0.25 (sec). Leaf size: 120

DSolve[3*x*y'[x]-3*x*y[x]^4*Log[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{(-2)^{2/3}\sqrt[3]{x}}{\sqrt[3]{3x^2 - 6x^2 \log(x) + 4c_1}}$$
$$y(x) \to \frac{2^{2/3}\sqrt[3]{x}}{\sqrt[3]{3x^2 - 6x^2 \log(x) + 4c_1}}$$
$$y(x) \to -\frac{\sqrt[3]{-1}2^{2/3}\sqrt[3]{x}}{\sqrt[3]{3x^2 - 6x^2 \log(x) + 4c_1}}$$
$$y(x) \to 0$$

1.70 problem 73

Internal problem ID [3215]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 73.

ODE order: 1. ODE degree: 1.

 ${\rm CAS\ Maple\ gives\ this\ as\ type\ [[_homogeneous,\ `class\ G'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ type',\ `class\ G'],\ _rational,\ [_Abel,\ `2nd\ type',\ `class\ t$

$$y' - \frac{4x^3y^2}{yx^4 + 2} = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 45

 $dsolve(diff(y(x),x)=(4*x^3*y(x)^2)/(x^4*y(x)+2),y(x), singsol=all)$

$$y(x) = \frac{x^4 - \sqrt{x^8 + 4c_1}}{2c_1}$$

$$y(x) = \frac{x^4 + \sqrt{x^8 + 4c_1}}{2c_1}$$

✓ Solution by Mathematica

Time used: 0.409 (sec). Leaf size: 56

 $DSolve[y'[x] == (4*x^3*y[x]^2)/(x^4*y[x]+2), y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2}{-x^4 + \sqrt{x^8 + 4c_1}}$$

$$y(x) \to -\frac{2}{x^4 + \sqrt{x^8 + 4c_1}}$$

$$y(x) \to 0$$

1.71 problem 74

Internal problem ID [3216]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 74.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [rational, Bernoulli]

$$y(6y^2 - x - 1) + 2xy' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

 $dsolve(y(x)*(6*y(x)^2-x-1)+2*x*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{(c_1 e^{-x} + 6) x}}{c_1 e^{-x} + 6}$$

$$y(x) = -\frac{\sqrt{(c_1 e^{-x} + 6) x}}{c_1 e^{-x} + 6}$$

✓ Solution by Mathematica

Time used: 0.709 (sec). Leaf size: 65

 $DSolve[y[x]*(6*y[x]^2-x-1)+2*x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \rightarrow -\frac{e^{x/2}\sqrt{x}}{\sqrt{6e^x + c_1}}$$

$$y(x) o rac{e^{x/2}\sqrt{x}}{\sqrt{6e^x + c_1}}$$

$$y(x) \to 0$$

1.72 problem 75

Internal problem ID [3217]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 75.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

$$(x+1)(y'+y^2) - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

 $dsolve((1+x)*(diff(y(x),x)+y(x)^2)-y(x)=0,y(x), singsol=all)$

$$y(x) = \frac{2x+2}{x^2+2c_1+2x}$$

✓ Solution by Mathematica

Time used: 0.201 (sec). Leaf size: 28

 $DSolve[(1+x)*(y'[x]+y[x]^2)-y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{2(x+1)}{x^2 + 2x + 2c_1}$$

$$y(x) \to 0$$

1.73 problem 76

Internal problem ID [3218]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 76.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Bernoulli]

$$y'yx + y^2 = \sin(x)$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 42

 $dsolve(x*y(x)*diff(y(x),x)+y(x)^2-sin(x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$
$$y(x) = -\frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$

✓ Solution by Mathematica

Time used: 0.367 (sec). Leaf size: 50

 $DSolve[x*y[x]*y'[x]+y[x]^2-Sin[x]==0,y[x],x,IncludeSingularSolutions \ -> \ True]$

$$y(x) \to -\frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$
$$y(x) \to \frac{\sqrt{2\sin(x) - 2x\cos(x) + c_1}}{x}$$

1.74 problem 77

Internal problem ID [3219]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 77.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class D'], _rational, _Bernoulli]

$$-y^4 + xy^3y' = -2x^3$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 73

 $dsolve((2*x^3-y(x)^4)+(x*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = (c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

$$y(x) = -(c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

$$y(x) = -i(c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

$$y(x) = i(c_1 x^4 + 8x^3)^{\frac{1}{4}}$$

✓ Solution by Mathematica

Time used: 0.243 (sec). Leaf size: 88

 $DSolve[(2*x^3-y[x]^4)+(x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -x^{3/4} \sqrt[4]{8 + c_1 x}$$

$$y(x) \to -ix^{3/4} \sqrt[4]{8 + c_1 x}$$

$$y(x) \to ix^{3/4} \sqrt[4]{8 + c_1 x}$$

$$y(x) \to x^{3/4} \sqrt[4]{8 + c_1 x}$$

1.75 problem 78

Internal problem ID [3220]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 78.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [Bernoulli]

$$y' - y \tan(x) + \cos(x) y^2 = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

 $dsolve(diff(y(x),x)-y(x)*tan(x)+y(x)^2*cos(x)=0,y(x), singsol=all)$

$$y(x) = \frac{1}{(x+c_1)\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.22 (sec). Leaf size: 19

DSolve[y'[x]-y[x]*Tan[x]+y[x]^2*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\sec(x)}{x + c_1}$$

$$y(x) \to 0$$

1.76 problem 79

Internal problem ID [3221]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 79.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, [_Abel, '2nd type', 'cl

$$6y^2 - x(2x^3 + y)y' = 0$$

✓ Solution by Maple

Time used: 0.156 (sec). Leaf size: 227

 $dsolve(6*y(x)^2-(x*(2*x^3+y(x)))*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = x^{3} \left(\frac{x^{3} - \sqrt{x^{6} + 8c_{1}x^{3}}}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{x^{3} + \sqrt{x^{6} + 8c_{1}x^{3}}}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} - \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} - \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} + \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} - \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

$$y(x) = x^{3} \left(\frac{\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2} \right)^{3} \left(x^{3} + \sqrt{x^{6} + 8c_{1}x^{3}} \right)}{2c_{1}} + 2 \right)$$

Time used: 1.396 (sec). Leaf size: 123

DSolve[6*y[x]^2-(x*(2*x^3+y[x]))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to 2x^3 \left(-1 + \frac{2}{1 - \frac{4x^{3/2}}{\sqrt{16x^3 + c_1}}}\right)$$

$$y(x) \to 2x^3 \left(-1 + \frac{2}{1 + \frac{4x^{3/2}}{\sqrt{16x^3 + c_1}}}\right)$$

$$y(x) \to 0$$

$$y(x) \to 2x^3$$

$$y(x) \to \frac{2((x^3)^{3/2} - x^{9/2})}{x^{3/2} + \sqrt{x^3}}$$

1.77 problem 80

Internal problem ID [3222]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 80.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$xy^{\prime 3} - yy^{\prime 2} = -1$$

/ Solu

Solution by Maple

Time used: 0.203 (sec). Leaf size: 80

 $dsolve(x*(diff(y(x),x))^3-y(x)*(diff(y(x),x))^2+1=0,y(x), singsol=all)$

$$egin{align} y(x) &= rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{2} \ y(x) &= -rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} - rac{3i\sqrt{3}\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} \ y(x) &= -rac{3\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} + rac{3i\sqrt{3}\,2^{rac{1}{3}}(x^2)^{rac{1}{3}}}{4} \ y(x) &= c_1x + rac{1}{c_1^2} \ \end{array}$$

Time used: 0.011 (sec). Leaf size: 69

DSolve[x*(y'[x])^3-y[x]*(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x + \frac{1}{c_1^2}$$

$$y(x) \to 3\left(-\frac{1}{2}\right)^{2/3} x^{2/3}$$

$$y(x) \to \frac{3x^{2/3}}{2^{2/3}}$$

$$y(x) \to -\frac{3\sqrt[3]{-1}x^{2/3}}{2^{2/3}}$$

1.78 problem 81

Internal problem ID [3223]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 81.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$y - xy' - y'^3 = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 33

 $dsolve(y(x)=x*diff(y(x),x)+(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -\frac{2\sqrt{-3x}\,x}{9}$$

$$y(x) = \frac{2\sqrt{-3x}\,x}{9}$$

$$y(x) = c_1^3 + c_1 x$$

✓ Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 54

DSolve[$y[x] == x*y'[x] + (y'[x])^3, y[x], x, IncludeSingularSolutions -> True$]

$$y(x) \to c_1(x + c_1^2)$$

$$y(x) \to -\frac{2ix^{3/2}}{3\sqrt{3}}$$

$$y(x) \rightarrow \frac{2ix^{3/2}}{3\sqrt{3}}$$

1.79 problem 82

Internal problem ID [3224]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 82.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [quadrature]

$$x\left(y'^2 - 1\right) - 2y' = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 49

 $dsolve(x*((diff(y(x),x))^2-1)=2*diff(y(x),x),y(x), singsol=all)$

$$y(x) = \sqrt{x^2 + 1} - \operatorname{arctanh}\left(\frac{1}{\sqrt{x^2 + 1}}\right) + \ln(x) + c_1$$

$$y(x) = -\sqrt{x^2 + 1} + \operatorname{arctanh}\left(\frac{1}{\sqrt{x^2 + 1}}\right) + \ln(x) + c_1$$

✓ Solution by Mathematica

Time used: 0.031 (sec). Leaf size: 59

 $DSolve[x*((y'[x])^2-1)==2*y'[x],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to \sqrt{x^2 + 1} + \log(\sqrt{x^2 + 1} - 1) + c_1$$

$$y(x) \to -\sqrt{x^2 + 1} + \log(\sqrt{x^2 + 1} + 1) + c_1$$

1.80 problem 83

Internal problem ID [3225]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 83.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class A'], _rational, _dAlembert]

$$xy'(y'+2) - y = 0$$

✓ Solution by Maple

Time used: 0.078 (sec). Leaf size: 49

dsolve(x*diff(y(x),x)*(diff(y(x),x)+2)=y(x),y(x), singsol=all)

$$y(x) = -x$$

$$y(x) = \sqrt{c_1 x} \left(\frac{\sqrt{c_1 x}}{x} + 2 \right)$$

$$y(x) = -\sqrt{c_1 x} \left(-\frac{\sqrt{c_1 x}}{x} + 2 \right)$$

✓ Solution by Mathematica

Time used: 0.186 (sec). Leaf size: 63

 $DSolve[x*y'[x]*(y'[x]+2)==y[x],y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to e^{c_1} - 2e^{\frac{c_1}{2}}\sqrt{x}$$

$$y(x) \to 2e^{-\frac{c_1}{2}}\sqrt{x} + e^{-c_1}$$

$$y(x) \to 0$$

$$y(x) \to -x$$

1.81 problem 84

Internal problem ID [3226]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 84.

ODE order: 1. ODE degree: 4.

CAS Maple gives this as type [quadrature]

$$-y'\sqrt{y'^2+1} = -x$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 187

 $dsolve(x=diff(y(x),x)*sqrt((diff(y(x),x))^2+1),y(x), singsol=all)$

$$y(x) = \frac{i\sqrt{2}\left(-\frac{256\sqrt{\pi}\sqrt{2}x^3\cosh\left(\frac{3\arcsin(2x)}{2}\right)}{3} - \frac{8\sqrt{\pi}\sqrt{2}\left(-\frac{64}{3}x^4 - \frac{8}{3}x^2 + \frac{2}{3}\right)\sinh\left(\frac{3\arcsin(2x)}{2}\right)}{\sqrt{4x^2 + 1}}\right)}{32\sqrt{\pi}} + c_1$$

$$y(x) = -\frac{i\sqrt{2}\left(-\frac{256\sqrt{\pi}\sqrt{2}x^3\cosh\left(\frac{3\arcsin(2x)}{2}\right)}{3} - \frac{8\sqrt{\pi}\sqrt{2}\left(-\frac{64}{3}x^4 - \frac{8}{3}x^2 + \frac{2}{3}\right)\sinh\left(\frac{3\arcsin(2x)}{2}\right)}{\sqrt{4x^2 + 1}}\right)}{32\sqrt{\pi}} + c_1$$

$$y(x) = \int -\frac{\sqrt{-2 + 2\sqrt{4x^2 + 1}}}{2} dx + c_1$$

$$y(x) = \int \frac{\sqrt{-2 + 2\sqrt{4x^2 + 1}}}{2} dx + c_1$$

Time used: 0.161 (sec). Leaf size: 207

 $DSolve[x==y'[x]*Sqrt[(y'[x])^2+1],y[x],x,IncludeSingularSolutions -> True]$

$$y(x) \to -\frac{\sqrt{2}x(\sqrt{4x^2 + 1} - 2)}{3\sqrt{\sqrt{4x^2 + 1} - 1}} + c_1$$

$$y(x) \to \frac{\sqrt{2}x(\sqrt{4x^2 + 1} - 2)}{3\sqrt{\sqrt{4x^2 + 1} - 1}} + c_1$$

$$y(x) \to -\frac{\sqrt{2}x(4x^2 + 3\sqrt{4x^2 + 1} + 3)}{3(-\sqrt{4x^2 + 1} - 1)^{3/2}} + c_1$$

$$y(x) \to \frac{\sqrt{2}x(4x^2 + 3\sqrt{4x^2 + 1} + 3)}{3(-\sqrt{4x^2 + 1} - 1)^{3/2}} + c_1$$

1.82 problem 85

Internal problem ID [3227]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 85.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _Clairaut]

$$2y'^{2}(-xy'+y) = 1$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 57

 $dsolve(2*(diff(y(x),x))^2*(y(x)-x*diff(y(x),x))=1,y(x), singsol=all)$

$$egin{aligned} y(x) &= rac{3x^{rac{2}{3}}}{2} \ y(x) &= -rac{3x^{rac{2}{3}}}{4} - rac{3i\sqrt{3}\,x^{rac{2}{3}}}{4} \ y(x) &= -rac{3x^{rac{2}{3}}}{4} + rac{3i\sqrt{3}\,x^{rac{2}{3}}}{4} \ y(x) &= c_1x + rac{1}{2c_1^2} \end{aligned}$$

Time used: 0.012 (sec). Leaf size: 67

DSolve[2*(y'[x])^2*(y[x]-x*y'[x])==1,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_1 x + \frac{1}{2c_1^2}$$

 $y(x) \to \frac{3x^{2/3}}{2}$
 $y(x) \to -\frac{3}{2}\sqrt[3]{-1}x^{2/3}$
 $y(x) \to \frac{3}{2}(-1)^{2/3}x^{2/3}$

1.83 problem 86

Internal problem ID [3228]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 86.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - 2xy' - y^2{y'}^3 = 0$$

/

Solution by Maple

Time used: 0.219 (sec). Leaf size: 107

 $dsolve(y(x)=2*x*diff(y(x),x)+y(x)^2*(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -\frac{22^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$
$$y(x) = \frac{22^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$

$$y(x) = -\frac{2i2^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$

$$y(x) = \frac{2i2^{\frac{1}{4}}3^{\frac{1}{4}}(-x^3)^{\frac{1}{4}}}{3}$$

$$y(x) = 0$$

$$y(x) = \sqrt{c_1^3 + 2c_1 x}$$

$$y(x) = -\sqrt{c_1^3 + 2c_1x}$$

Time used: 0.147 (sec). Leaf size: 119

 $DSolve[y[x] == 2*x*y'[x] + y[x]^2*(y'[x])^3, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\sqrt{2c_1x + c_1^3}$$

$$y(x) \to \sqrt{2c_1x + c_1^3}$$

$$y(x) \to (-1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 - i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (-1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

$$y(x) \to (1 + i) \left(\frac{2}{3}\right)^{3/4} x^{3/4}$$

1.84 problem 87

Internal problem ID [3229]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 87.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[1st order, with linear symmetries]]

$$y'^3 + y^2 - y'yx = 0$$

✓ Solution by Maple

Time used: 0.203 (sec). Leaf size: 269

 $\label{eq:decomposition} \\ \mbox{dsolve}((\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x})^2 = \mbox{x*y}(\mbox{x}) * \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}),\mbox{y}(\mbox{x}), \\ \mbox{singsol=all}) \\$

$$y(x) = 0$$

$$y(x) = \frac{2x^4}{81\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{2x^3\sqrt{x^2 + 3c_1}}{81\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{c_1x^2}{27\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)} + \frac{2c_1x\sqrt{x^2 + 3c_1}}{27\left(\frac{x}{3} - \frac{\sqrt{x^2 + 3c_1}}{3}\right)} + \frac{c_1^2}{3x - 3\sqrt{x^2 + 3c_1}}$$

$$y(x) = \frac{2x^4}{81\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)} + \frac{2x^3\sqrt{x^2 + 3c_1}}{81\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{c_1x^2}{27\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{c_1x^2}{27\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)} - \frac{c_1x^2}{27\left(\frac{x}{3} + \frac{\sqrt{x^2 + 3c_1}}{3}\right)}$$

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[(y'[x])^3+y[x]^2==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]

Timed out

1.85 problem 88

Internal problem ID [3230]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 88.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$2xy' - y - y' \ln(y'y) = 0$$

✓ Solution by Maple

Time used: 0.079 (sec). Leaf size: 80

dsolve(2*x*diff(y(x),x)-y(x)=diff(y(x),x)*ln(y(x)*diff(y(x),x)),y(x), singsol=all)

$$\begin{split} y(x) &= \mathrm{e}^{-\frac{1}{2} + x} \\ y(x) &= -\mathrm{e}^{-\frac{1}{2} + x} \\ y(x) &= \sqrt{-2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} c_1 + 2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} x} \, \mathrm{e}^x \\ y(x) &= -\sqrt{-2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} c_1 + 2 \, \mathrm{e}^{-2x} \mathrm{e}^{2c_1} x} \, \mathrm{e}^x \end{split}$$

✓ Solution by Mathematica

Time used: 0.35 (sec). Leaf size: 59

DSolve[2*x*y'[x]-y[x]==y'[x]*Log[y[x]*y'[x]],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -e^{c_1}\sqrt{-2x + i\pi + 2c_1}$$
$$y(x) \to e^{c_1}\sqrt{-2x + i\pi + 2c_1}$$
$$y(x) \to 0$$

1.86 problem 89

Internal problem ID [3231]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 89.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

$$y - xy' + x^2y'^3 = 0$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 123

 $dsolve(y(x)=x*diff(y(x),x)-x^2*(diff(y(x),x))^3,y(x), singsol=all)$

$$y(x) = -x^{2} \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} + 8 Z^{2} c_{1} x - Z + 4 c_{1}\right)^{3}$$

$$+ x \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} + 8 Z^{2} c_{1} x - Z + 4 c_{1}\right)$$

$$y(x) = -x^{2} \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} - 16 Z^{2} c_{1} x - Z + 16 c_{1}\right)^{3}$$

$$+ x \operatorname{RootOf} \left(4 Z^{4} c_{1} x^{2} - 16 Z^{2} c_{1} x - Z + 16 c_{1}\right)$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

 $DSolve[y[x] == x*y'[x]-x^2*(y'[x])^3,y[x],x,IncludeSingularSolutions \rightarrow True]$

Timed out

1.87 problem 90

Internal problem ID [3232]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 90.

ODE order: 1. ODE degree: 3.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$y(y - 2xy')^3 - y'^2 = 0$$

✓ Solution by Maple

Time used: 0.188 (sec). Leaf size: 577

 $dsolve(y(x)* (y(x)-2*x*diff(y(x),x))^3 = (diff(y(x),x))^2 ,y(x), singsol=all)$

$$y(x) = -\frac{\sqrt{3}}{9x}$$

$$y(x) = \frac{\sqrt{3}}{9x}$$

$$y(x) = 0$$

y(x)

$$=\frac{\operatorname{RootOf}\left(-\ln\left(x\right)+c_{1}+24\left(\int^{-Z}\frac{\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{4}+36_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{2}-1\right)^{\frac{1}{3}}_a^{2}+\left(24_a^{3}\sqrt{81_a^{2}-3}-216_a^{2}-1\right)^{\frac{1}{3}}$$

y(x)

$$= \frac{\text{RootOf}\left(-\ln\left(x\right) + c_1 - 48\left(\int^{-Z} \frac{1}{i\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 - 1$$

y(x)

$$= \frac{\text{RootOf}\left(-\ln\left(x\right) + c_1 + 48\left(\int^{-Z} \frac{1}{i\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 216\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 + 36\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^4 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 72\left(24\underline{a}^3\sqrt{81\underline{a}^2 - 3} - 226\underline{a}^2 - 1\right)^{\frac{2}{3}}\sqrt{3} + 24i\sqrt{3}\underline{a}^2 + 24i\sqrt{3}\underline{a}^2$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

Timed out

1.88 problem 91

Internal problem ID [3233]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 91.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G'], _dAlembert]

$$xy' + y - 4\sqrt{y'} = 0$$

✓ Solution by Maple

Time used: 0.125 (sec). Leaf size: 63

dsolve(y(x)+x*diff(y(x),x) = 4*sqrt(diff(y(x),x)),y(x), singsol=all)

$$y(x) = -\frac{4 \operatorname{LambertW} \left(-\frac{c_1 x}{2}\right)^2}{x} + 8\sqrt{\frac{\operatorname{LambertW} \left(-\frac{c_1 x}{2}\right)^2}{x^2}}$$

$$y(x) = -\frac{4 \operatorname{LambertW}\left(\frac{c_1 x}{2}\right)^2}{x} + 8\sqrt{\frac{\operatorname{LambertW}\left(\frac{c_1 x}{2}\right)^2}{x^2}}$$

✓ Solution by Mathematica

Time used: 1.157 (sec). Leaf size: 94

DSolve[y[x]+x*y'[x]==4*Sqrt[y'[x]],y[x],x,IncludeSingularSolutions -> True]

Solve
$$\left[\frac{2e^{-\frac{1}{2}\sqrt{4-xy(x)}}\left(-2\sqrt{4-xy(x)}-4\right)}{y(x)} = c_1, y(x)\right]$$
Solve
$$\left[\frac{2e^{\frac{1}{2}\sqrt{4-xy(x)}}\left(2\sqrt{4-xy(x)}-4\right)}{y(x)} = c_1, y(x)\right]$$

$$y(x) \to 0$$

1.89 problem 92

Internal problem ID [3234]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 92.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries], _dAlembert]

$$2xy' - y - \ln(y') = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

dsolve(2*x*diff(y(x),x) - y(x) = ln(diff(y(x),x)),y(x), singsol=all)

$$y(x) = 1 + \sqrt{4c_1x + 1} - \ln\left(\frac{1 + \sqrt{4c_1x + 1}}{2x}\right)$$
$$y(x) = 1 - \sqrt{4c_1x + 1} - \ln\left(-\frac{-1 + \sqrt{4c_1x + 1}}{2x}\right)$$

✓ Solution by Mathematica

Time used: 0.106 (sec). Leaf size: 34

DSolve[2*x*y'[x] -y[x] == Log[y'[x]], y[x], x, IncludeSingularSolutions -> True]

Solve
$$[W(-2xe^{-y(x)}) - \log(W(-2xe^{-y(x)}) + 2) + y(x) = c_1, y(x)]$$

1.90 problem 111

Internal problem ID [3235]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 111.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class G'], _rational, _Bernoulli]

$$xy^2(xy'+y) = 1$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 96

 $dsolve(x*y(x)^2*(x*diff(y(x),x)+y(x))=1,y(x), singsol=all)$

$$y(x) = rac{(12x^2 + 8c_1)^{rac{1}{3}}}{2x}$$
 $y(x) = rac{-rac{(12x^2 + 8c_1)^{rac{1}{3}}}{4} - rac{i\sqrt{3}(12x^2 + 8c_1)^{rac{1}{3}}}{4}}{x}$ $y(x) = rac{-rac{(12x^2 + 8c_1)^{rac{1}{3}}}{4} + rac{i\sqrt{3}(12x^2 + 8c_1)^{rac{1}{3}}}{4}}{x}$

✓ Solution by Mathematica

Time used: 0.233 (sec). Leaf size: 80

 $DSolve[x*y[x]^2*(x*y'[x]+y[x]) == 1, y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -\frac{\sqrt[3]{-\frac{1}{2}}\sqrt[3]{3x^2 + 2c_1}}{x}$$
$$y(x) \to \frac{\sqrt[3]{\frac{3x^2}{2} + c_1}}{x}$$
$$y(x) \to \frac{(-1)^{2/3}\sqrt[3]{\frac{3x^2}{2} + c_1}}{x}$$

1.91 problem 112

Internal problem ID [3236]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 112.

ODE order: 1. ODE degree: 2.

CAS Maple gives this as type [[_homogeneous, 'class G']]

$$5y + y'^2 - x(x + y') = 0$$

✓ Solution by Maple

Time used: 0.109 (sec). Leaf size: 105

 $\label{eq:decomposition} dsolve(5*y(x)+(diff(y(x),x))^2=x*(x+diff(y(x),x)),y(x), singsol=all)$

$$y(x) = \frac{x^2}{4}$$

$$y(x) = \frac{3x^2}{2} - \frac{x(5x - 2\sqrt{-5c_1})}{2} + c_1$$

$$y(x) = \frac{3x^2}{2} - \frac{x(5x + 2\sqrt{-5c_1})}{2} + c_1$$

$$y(x) = \frac{3x^2}{2} + \frac{x(-5x - 2\sqrt{-5c_1})}{2} + c_1$$

$$y(x) = \frac{3x^2}{2} + \frac{x(-5x + 2\sqrt{-5c_1})}{2} + c_1$$

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve $[5*y[x]+(y'[x])^2==x*(x+y'[x]),y[x],x,IncludeSingularSolutions -> True]$

Timed out

1.92 problem 113

Internal problem ID [3237]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 113.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [_separable]

$$y' - \frac{2+y}{x+1} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 11

dsolve(diff(y(x),x)=(y(x)+2)/(x+1),y(x), singsol=all)

$$y(x) = -2 + c_1(x+1)$$

✓ Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 18

DSolve[y'[x] == (y[x]+2)/(x+1),y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -2 + c_1(x+1)$$

$$y(x) \rightarrow -2$$

1.93 problem 115

Internal problem ID [3238]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 115.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$xy' - y + x e^{\frac{y}{x}} = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 12

dsolve(x*diff(y(x),x)=y(x)-x*exp(y(x)/x),y(x), singsol=all)

$$y(x) = -\ln\left(\ln\left(x\right) + c_1\right)x$$

✓ Solution by Mathematica

Time used: 0.426 (sec). Leaf size: 16

DSolve[x*y'[x] == y[x]-x*Exp[y[x]/x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -x \log(\log(x) - c_1)$$

1.94 problem 116

Internal problem ID [3239]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 116.

ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [_exact, _Bernoulli]

$$y^{2} \sin(2x) - 2y \cos(x)^{2} y' = -1$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

 $dsolve((1+y(x)^2*sin(2*x))-(2*y(x)*cos(x)^2)*diff(y(x),x)=0,y(x), singsol=all)$

$$y(x) = \frac{\sqrt{x + c_1}}{\cos(x)}$$

$$y(x) = -\frac{\sqrt{x+c_1}}{\cos(x)}$$

✓ Solution by Mathematica

Time used: 0.321 (sec). Leaf size: 32

$$y(x) \to -\sqrt{x+c_1}\sec(x)$$

$$y(x) \to \sqrt{x + c_1} \sec(x)$$

1.95 problem 117

Internal problem ID [3240]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 117.

ODE order: 1. ODE degree: 1.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$2\sqrt{yx} - y - xy' = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 58

dsolve((2*sqrt(x*y(x))-y(x))-x*diff(y(x),x)=0,y(x), singsol=all)

$$\frac{\sqrt{y(x)x}}{(y(x)-x)\left(\sqrt{y(x)x}-x\right)x} + \frac{1}{(y(x)-x)\left(\sqrt{y(x)x}-x\right)} - c_1 = 0$$

✓ Solution by Mathematica

Time used: 0.209 (sec). Leaf size: 26

DSolve[(2*Sqrt[x*y[x]]-y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\left(x + e^{\frac{c_1}{2}}\right)^2}{x}$$

$$y(x) \to x$$

1.96 problem 119

Internal problem ID [3241]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

Problem number: 119.

ODE order: 1. ODE degree: 0.

CAS Maple gives this as type [[_homogeneous, 'class A'], _dAlembert]

$$y' = e^{\frac{xy'}{y}}$$

✓ Solution by Maple

Time used: 0.031 (sec). Leaf size: 15

dsolve(diff(y(x),x)=exp(x*diff(y(x),x)/y(x)),y(x), singsol=all)

$$y(x) = -\frac{\mathrm{e}^{-c_1 x}}{c_1}$$

✓ Solution by Mathematica

Time used: 0.078 (sec). Leaf size: 21

 $DSolve[y'[x] == Exp[x*y'[x]/y[x]], y[x], x, IncludeSingularSolutions \rightarrow True]$

$$y(x) \to -e^{c_1 - e^{-c_1}x}$$

2 Chapter 4. Linear Differential Equations. Page

2.1	problem 1	L.	•	•						•			•	•					•			124
2.2	problem 2	2.																				125
2.3	problem 3	3.																				126
2.4	problem 4	1.																				127
2.5	problem 5	5.																				128
2.6	problem 6	3.																				129
2.7	problem 7	7.																				130
2.8	problem 8	3.																				131
2.9	problem 9	9.	•								•											132
2.10	problem 1	10									•											133
2.11	problem 1	l1									•											134
2.12	problem 1	12									•											135
2.13	problem 1	13									•											136
2.14	problem 1	L4									•											137
2.15	problem 1	L 5																				138
2.16	problem 1	16									•											139
2.17	problem 1	۱7																				140
2.18	problem 1	18																				141
2.19	problem 1	L9																				142
2.20	problem 2	20																				143
2.21	problem 2	21																				144
2.22	problem 2	22																				145

2.1 problem 1

Internal problem ID [3242]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 1.

ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 2y'' + y' - 2y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(diff(y(x),x\$3)-2*diff(y(x),x\$2)+diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 \sin(x) + c_3 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 24

DSolve[y'''[x]-2*y''[x]+y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 e^{2x} + c_1 \cos(x) + c_2 \sin(x)$$

2.2 problem 2

Internal problem ID [3243]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 2.

ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' + 9y' + 9y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)+9*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{-x} + c_2 \sin(3x) + c_3 \cos(3x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

DSolve[y'''[x]+y''[x]+9*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to c_3 e^{-x} + c_1 \cos(3x) + c_2 \sin(3x)$$

2.3 problem 3

Internal problem ID [3244]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 3.

ODE order: 3.
ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + y'' - y' - y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 22

dsolve(diff(y(x),x\$3)+diff(y(x),x\$2)-diff(y(x),x)-y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 e^{-x} x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 26

DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} (c_2 x + c_3 e^{2x} + c_1)$$

2.4 problem 4

Internal problem ID [3245]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 4.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' + 8y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 31

dsolve(diff(y(x),x\$3)+8*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-2x}c_1 + c_2e^x \sin(\sqrt{3}x) + c_3e^x \cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 42

DSolve[y'''[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow c_1 e^{-2x} + c_3 e^x \cos\left(\sqrt{3}x\right) + c_2 e^x \sin\left(\sqrt{3}x\right)$$

2.5 problem 5

Internal problem ID [3246]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 5.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_x]]

$$y''' - 8y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

dsolve(diff(y(x),x\$3)-8*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^{2x} + c_2 e^{-x} \sin(\sqrt{3}x) + c_3 e^{-x} \cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 42

DSolve[y'''[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} \left(c_1 e^{3x} + c_2 \cos \left(\sqrt{3}x \right) + c_3 \sin \left(\sqrt{3}x \right) \right)$$

2.6 problem 6

Internal problem ID [3247]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 6.

ODE order: 4.
ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 4y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

dsolve(diff(y(x),x\$4)+4*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 e^x \sin(x) + c_2 e^x \cos(x) + c_3 e^{-x} \sin(x) + c_4 e^{-x} \cos(x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 40

DSolve[y'''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-x} ((c_4 e^{2x} + c_1) \cos(x) + (c_3 e^{2x} + c_2) \sin(x))$$

2.7 problem 7

Internal problem ID [3248]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 7.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' + 18y'' + 81y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$4)+18*diff(y(x),x\$2)+81*y(x)=0,y(x), singsol=all)

$$y(x) = c_1 \sin(3x) + c_2 \cos(3x) + c_3 \sin(3x) x + c_4 \cos(3x) x$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 30

DSolve[y'''[x]+18*y''[x]+81*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to (c_2x + c_1)\cos(3x) + (c_4x + c_3)\sin(3x)$$

2.8 problem 8

Internal problem ID [3249]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 8.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 4y'' + 16y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 48

dsolve(diff(y(x),x\$4)-4*diff(y(x),x\$2)+16*y(x)=0,y(x), singsol=all)

$$y(x) = -c_1 e^{\sqrt{3}x} \sin(x) + c_2 e^{-\sqrt{3}x} \sin(x) + c_3 e^{\sqrt{3}x} \cos(x) + c_4 e^{-\sqrt{3}x} \cos(x)$$

✓ Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 55

DSolve[y'''[x]-4*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-\sqrt{3}x} \Big(\Big(c_3 e^{2\sqrt{3}x} + c_2 \Big) \cos(x) + \Big(c_1 e^{2\sqrt{3}x} + c_4 \Big) \sin(x) \Big)$$

2.9 problem 9

Internal problem ID [3250]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 9.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 2y''' + 2y'' - 2y' + y = 0$$

✓ Solution by Maple

Time used: 0.015 (sec). Leaf size: 22

 $\frac{dsolve(diff(y(x),x\$4)-2*diff(y(x),x\$3)+2*diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=0}{},y(x), singsol=\frac{1}{2}$

$$y(x) = c_1 e^x + c_2 e^x x + c_3 \sin(x) + c_4 \cos(x)$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 27

DSolve[y'''[x]-2*y'''[x]+2*y''[x]-2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^x(c_4x + c_3) + c_1\cos(x) + c_2\sin(x)$$

2.10 problem 10

Internal problem ID [3251]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 10.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y'''' - 5y''' + 5y'' + 5y' - 6y = 0$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 27

dsolve(diff(y(x),x\$4)-5*diff(y(x),x\$3)+5*diff(y(x),x\$2)+5*diff(y(x),x)-6*y(x)=0,y(x), singsc

$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 e^{2x} + c_4 e^{3x}$$

✓ Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 36

DSolve[y''' [x]-5*y'' [x]+5*y' [x]+5*y' [x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True

$$y(x) \rightarrow c_1 e^{-x} + c_2 e^x + c_3 e^{2x} + c_4 e^{3x}$$

2.11 problem 11

Internal problem ID [3252]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 11.

ODE order: 5. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(5)} - 6y'''' + 9y''' = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 27

 $\label{lem:decomposition} \\ \mbox{dsolve}(\mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$$\$$}4) + 9 * \mbox{diff}(\mbox{y}(\mbox{x}),\mbox{x$$\$$}3) = 0, \\ \mbox{y}(\mbox{x}), \mbox{singsol=all}) \\$

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 e^{3x} + c_5 e^{3x} x$$

✓ Solution by Mathematica

Time used: 0.143 (sec). Leaf size: 35

 $DSolve[y''''[x]-6*y''''[x]+9*y'''[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]$

$$y(x) \to \frac{1}{27}e^{3x}(c_2(x-1)+c_1)+x(c_5x+c_4)+c_3$$

2.12 problem 12

Internal problem ID [3253]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 12.

ODE order: 6. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_x]]

$$y^{(6)} - 64y = 0$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 61

dsolve(diff(y(x),x\$6)-64*y(x)=0,y(x), singsol=all)

$$y(x) = e^{-2x}c_1 + c_2e^{2x} + c_3e^x \sin(\sqrt{3}x) + c_4e^x \cos(\sqrt{3}x) + c_5e^{-x} \sin(\sqrt{3}x) + c_6e^{-x} \cos(\sqrt{3}x)$$

✓ Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 68

DSolve[y''''[x]-64*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to e^{-2x} \left(c_1 e^{4x} + e^x \left(c_2 e^{2x} + c_3 \right) \cos \left(\sqrt{3}x \right) + e^x \left(c_6 e^{2x} + c_5 \right) \sin \left(\sqrt{3}x \right) + c_4 \right)$$

2.13 problem 13

Internal problem ID [3254]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 13.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 6y' + 10y = 3e^{-3x}x - 2\cos(x)e^{3x}$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 43

dsolve(diff(y(x),x\$2)+6*diff(y(x),x)+10*y(x)=3*x*exp(-3*x)-2*exp(3*x)*cos(x),y(x), singsol=3*x*exp(-3*x)+10*y(x)+10*

$$y(x) = e^{-3x} \sin(x) c_2 + e^{-3x} \cos(x) c_1 + \frac{(-3\cos(x) - \sin(x)) e^{3x}}{60} + 3x e^{-3x}$$

✓ Solution by Mathematica

Time used: 0.426 (sec). Leaf size: 46

$$y(x) \to \frac{1}{60}e^{-3x} (180x - 3(e^{6x} - 20c_2)\cos(x) - (e^{6x} - 60c_1)\sin(x))$$

2.14 problem 14

Internal problem ID [3255]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 14.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 8y' + 17y = e^{4x}(x^2 - 3\sin(x)x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 46

 $dsolve(diff(y(x),x$2)-8*diff(y(x),x)+17*y(x)=exp(4*x)*(x^2-3*x*sin(x)),y(x), singsol=all)$

$$y(x) = e^{4x} \sin(x) c_2 + e^{4x} \cos(x) c_1 - \frac{e^{4x} (-3\cos(x) x^2 + 3x\sin(x) - 4x^2 + 8)}{4}$$

✓ Solution by Mathematica

Time used: 0.263 (sec). Leaf size: 47

$$y(x) \to \frac{1}{8}e^{4x} (8(x^2 - 2) + (6x^2 - 3 + 8c_2)\cos(x) + (-6x + 8c_1)\sin(x))$$

2.15 problem 15

Internal problem ID [3256]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 15.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' - 2y' + 2y = (x + e^x)\sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 40

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=(x+exp(x))*sin(x),y(x), singsol=all)

$$y(x) = e^{x} \sin(x) c_{2} + e^{x} \cos(x) c_{1} + \frac{(-25 e^{x} x + 20x + 28) \cos(x)}{50} + \frac{\sin(x) (5x + 2)}{25}$$

✓ Solution by Mathematica

Time used: 0.333 (sec). Leaf size: 48

DSolve[y''[x]-2*y'[x]+2*y[x]==(x+Exp[x])*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{50}((-5(5e^x - 4)x + 50c_2e^x + 28)\cos(x) + 2(5x + 25c_1e^x + 2)\sin(x))$$

2.16 problem 16

Internal problem ID [3257]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 16.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 4y = \sinh(x)\sin(2x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

dsolve(diff(y(x),x\$2)+4*y(x)=sinh(x)*sin(2*x),y(x), singsol=all)

$$y(x) = \sin(2x) c_2 + c_1 \cos(2x) + \frac{(-4e^x - 4e^{-x})\cos(2x)}{34} + \frac{\sin(2x)(e^x - e^{-x})}{34}$$

✓ Solution by Mathematica

Time used: 0.119 (sec). Leaf size: 46

DSolve[y''[x]+4*y[x]==Sinh[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{34}(-(4-i)\cos((2+i)x) - (4+i)\cosh((1+2i)x) + 34c_1\cos(2x) + 34c_2\sin(2x))$$

2.17 problem 17

Internal problem ID [3258]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 17.

ODE order: 2. ODE degree: 1.

CAS Maple gives this as type [[_2nd_order, _linear, _nonhomogeneous]]

$$y'' + 2y' + 2y = \cosh(x)\sin(x)$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 41

 $\label{eq:diff} \\ \text{dsolve}(\text{diff}(y(x),x\$2)+2*\text{diff}(y(x),x)+2*y(x)=\cosh(x)*\sin(x),y(x), \text{ singsol=all}) \\$

$$y(x) = e^{-x} \sin(x) c_2 + e^{-x} \cos(x) c_1 - \frac{e^{-x} \cos(x) x}{4} - \frac{e^{x} (\cos(x) - \sin(x))}{16}$$

✓ Solution by Mathematica

Time used: 0.199 (sec). Leaf size: 47

DSolve[y''[x]+2*y'[x]+2*y[x]==Cosh[x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{1}{16}e^{-x}((e^{2x} + 2 + 16c_1)\sin(x) - (e^{2x} + 4(x - 4c_2))\cos(x))$$

2.18 problem 18

Internal problem ID [3259]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 18.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' + y' = \sin(x) + \cos(x) x$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 31

dsolve(diff(y(x),x\$3)+diff(y(x),x)=sin(x)+x*cos(x),y(x), singsol=all)

$$y(x) = -\frac{\cos(x) x^{2}}{4} + \frac{\cos(x)}{2} + \frac{x \sin(x)}{4} - c_{2} \cos(x) + \sin(x) c_{1} + c_{3}$$

✓ Solution by Mathematica

Time used: 0.237 (sec). Leaf size: 36

DSolve[y'''[x]+y'[x]==Sin[x]+x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to -\frac{1}{8}(2x^2 - 3 + 8c_2)\cos(x) + (\frac{x}{4} + c_1)\sin(x) + c_3$$

2.19 problem 19

Internal problem ID [3260]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 19.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[3rd order, linear, nonhomogeneous]]

$$y''' - 2y'' + 4y' - 8y = e^{2x} \sin(2x) + 2x^2$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 96

 $dsolve(diff(y(x),x$3)-2*diff(y(x),x$2)+4*diff(y(x),x)-8*y(x)=exp(2*x)*sin(2*x)+2*x^2,y(x),s$

$$y(x) = -\frac{e^{-2x}(2e^{4x} + 5e^{2x})\cos(2x)}{80} - \frac{e^{-2x}(4e^{4x} - 5e^{2x})\sin(2x)}{80} - \frac{e^{-2x}(4x^2e^{2x} + 4e^{2x}x + e^{4x})}{16} + c_1\cos(2x) + c_2e^{2x} + c_3\sin(2x)$$

✓ Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 61

DSolve[y'''[x]-2*y''[x]+4*y'[x]-8*y[x]==Exp[2*x]*Sin[2*x]+2*x^2,y[x],x,IncludeSingularSoluti

$$y(x) \to \frac{1}{80} \left(-20x(x+1) + 5(-1 + 16c_3)e^{2x} - 2(e^{2x} - 40c_1)\cos(2x) - 4(e^{2x} - 20c_2)\sin(2x) \right)$$

2.20 problem 20

Internal problem ID [3261]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 20.

ODE order: 3. ODE degree: 1.

CAS Maple gives this as type [[_3rd_order, _missing_y]]

$$y''' - 4y'' + 3y' = x^2 + x e^{2x}$$

✓ Solution by Maple

Time used: 0.0 (sec). Leaf size: 43

 $dsolve(diff(y(x),x\$3)-4*diff(y(x),x\$2)+3*diff(y(x),x)=x^2+x*exp(2*x),y(x), singsol=all)$

$$y(x) = \frac{x^3}{9} + \frac{4x^2}{9} - \frac{e^{2x}x}{2} + \frac{e^{2x}}{4} + e^x c_2 + \frac{e^{3x}c_1}{3} + \frac{26x}{27} + c_3$$

✓ Solution by Mathematica

Time used: 0.239 (sec). Leaf size: 58

DSolve[y'''[x]-4*y''[x]+3*y'[x]==x^2+x*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \rightarrow \frac{x^3}{9} + \frac{4x^2}{9} + \frac{26x}{27} + \frac{1}{4}e^{2x}(1 - 2x) + c_1e^x + \frac{1}{3}c_2e^{3x} + c_3$$

2.21 problem 21

Internal problem ID [3262]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 21.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _missing_y]]

$$y'''' + 2y'' = 7x - 3\cos(x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 36

dsolve(diff(y(x),x\$4)+2*diff(y(x),x\$2)=7*x-3*cos(x),y(x), singsol=all)

$$y(x) = \frac{7x^3}{12} - \frac{\cos(\sqrt{2}x)c_1}{2} - \frac{\sin(\sqrt{2}x)c_2}{2} + 3\cos(x) + c_3x + c_4$$

✓ Solution by Mathematica

Time used: 0.603 (sec). Leaf size: 51

DSolve[y'''[x]+2*y''[x]==7*x-3*Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{7x^3}{12} + 3\cos(x) + c_4x - \frac{1}{2}c_1\cos(\sqrt{2}x) - \frac{1}{2}c_2\sin(\sqrt{2}x) + c_3$$

2.22 problem 22

Internal problem ID [3263]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Section: Chapter 4. Linear Differential Equations. Page 183

Problem number: 22.

ODE order: 4. ODE degree: 1.

CAS Maple gives this as type [[_high_order, _linear, _nonhomogeneous]]

$$y'''' + 5y'' + 4y = \sin(x)\cos(2x)$$

✓ Solution by Maple

Time used: 0.016 (sec). Leaf size: 40

dsolve(diff(y(x),x\$4)+5*diff(y(x),x\$2)+4*y(x)=sin(x)*cos(2*x),y(x), singsol=all)

$$y(x) = \frac{x\cos(x)}{12} + \frac{\sin(3x)}{80} - \frac{\sin(x)}{144} + \cos(x)c_1 + c_2\sin(x) + c_3\cos(2x) + c_4\sin(2x)$$

✓ Solution by Mathematica

Time used: 0.04 (sec). Leaf size: 50

DSolve[y'''[x]+5*y''[x]+4*y[x]==Sin[x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]

$$y(x) \to \frac{\sin(x)}{72} + \frac{1}{80}\sin(3x) + \left(\frac{x}{12} + c_3\right)\cos(x) + c_1\cos(2x) + c_4\sin(x) + c_2\sin(2x)$$