### 3.16 $$\int x \text{csch}^{-1}(\sqrt{x}) \, dx$$

Optimal. Leaf size=64 $\frac{1}{2} x^2 \text{csch}^{-1}\left (\sqrt{x}\right )-\frac{(-x-1)^{3/2} \sqrt{x}}{6 \sqrt{-x}}-\frac{\sqrt{-x-1} \sqrt{x}}{2 \sqrt{-x}}$

[Out]

-(Sqrt[-1 - x]*Sqrt[x])/(2*Sqrt[-x]) - ((-1 - x)^(3/2)*Sqrt[x])/(6*Sqrt[-x]) + (x^2*ArcCsch[Sqrt[x]])/2

________________________________________________________________________________________

Rubi [A]  time = 0.017491, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 8, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.375, Rules used = {6346, 12, 43} $\frac{1}{2} x^2 \text{csch}^{-1}\left (\sqrt{x}\right )-\frac{(-x-1)^{3/2} \sqrt{x}}{6 \sqrt{-x}}-\frac{\sqrt{-x-1} \sqrt{x}}{2 \sqrt{-x}}$

Antiderivative was successfully veriﬁed.

[In]

Int[x*ArcCsch[Sqrt[x]],x]

[Out]

-(Sqrt[-1 - x]*Sqrt[x])/(2*Sqrt[-x]) - ((-1 - x)^(3/2)*Sqrt[x])/(6*Sqrt[-x]) + (x^2*ArcCsch[Sqrt[x]])/2

Rule 6346

Int[((a_.) + ArcCsch[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m + 1)*(a + b*ArcCsc
h[u]))/(d*(m + 1)), x] - Dist[(b*u)/(d*(m + 1)*Sqrt[-u^2]), Int[SimplifyIntegrand[((c + d*x)^(m + 1)*D[u, x])/
(u*Sqrt[-1 - u^2]), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !F
unctionOfQ[(c + d*x)^(m + 1), u, x] &&  !FunctionOfExponentialQ[u, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x \text{csch}^{-1}\left (\sqrt{x}\right ) \, dx &=\frac{1}{2} x^2 \text{csch}^{-1}\left (\sqrt{x}\right )-\frac{\sqrt{x} \int \frac{x}{2 \sqrt{-1-x}} \, dx}{2 \sqrt{-x}}\\ &=\frac{1}{2} x^2 \text{csch}^{-1}\left (\sqrt{x}\right )-\frac{\sqrt{x} \int \frac{x}{\sqrt{-1-x}} \, dx}{4 \sqrt{-x}}\\ &=\frac{1}{2} x^2 \text{csch}^{-1}\left (\sqrt{x}\right )-\frac{\sqrt{x} \int \left (-\frac{1}{\sqrt{-1-x}}-\sqrt{-1-x}\right ) \, dx}{4 \sqrt{-x}}\\ &=-\frac{\sqrt{-1-x} \sqrt{x}}{2 \sqrt{-x}}-\frac{(-1-x)^{3/2} \sqrt{x}}{6 \sqrt{-x}}+\frac{1}{2} x^2 \text{csch}^{-1}\left (\sqrt{x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0238208, size = 35, normalized size = 0.55 $\frac{1}{2} x^2 \text{csch}^{-1}\left (\sqrt{x}\right )+\frac{1}{6} \sqrt{\frac{1}{x}+1} (x-2) \sqrt{x}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x*ArcCsch[Sqrt[x]],x]

[Out]

(Sqrt[1 + x^(-1)]*(-2 + x)*Sqrt[x])/6 + (x^2*ArcCsch[Sqrt[x]])/2

________________________________________________________________________________________

Maple [A]  time = 0.119, size = 31, normalized size = 0.5 \begin{align*}{\frac{{x}^{2}}{2}{\rm arccsch} \left (\sqrt{x}\right )}+{\frac{ \left ( 1+x \right ) \left ( x-2 \right ) }{6}{\frac{1}{\sqrt{{\frac{1+x}{x}}}}}{\frac{1}{\sqrt{x}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x*arccsch(x^(1/2)),x)

[Out]

1/2*x^2*arccsch(x^(1/2))+1/6*(1+x)*(x-2)/((1+x)/x)^(1/2)/x^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.00056, size = 46, normalized size = 0.72 \begin{align*} \frac{1}{6} \, x^{\frac{3}{2}}{\left (\frac{1}{x} + 1\right )}^{\frac{3}{2}} + \frac{1}{2} \, x^{2} \operatorname{arcsch}\left (\sqrt{x}\right ) - \frac{1}{2} \, \sqrt{x} \sqrt{\frac{1}{x} + 1} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccsch(x^(1/2)),x, algorithm="maxima")

[Out]

1/6*x^(3/2)*(1/x + 1)^(3/2) + 1/2*x^2*arccsch(sqrt(x)) - 1/2*sqrt(x)*sqrt(1/x + 1)

________________________________________________________________________________________

Fricas [A]  time = 2.56279, size = 113, normalized size = 1.77 \begin{align*} \frac{1}{2} \, x^{2} \log \left (\frac{x \sqrt{\frac{x + 1}{x}} + \sqrt{x}}{x}\right ) + \frac{1}{6} \,{\left (x - 2\right )} \sqrt{x} \sqrt{\frac{x + 1}{x}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccsch(x^(1/2)),x, algorithm="fricas")

[Out]

1/2*x^2*log((x*sqrt((x + 1)/x) + sqrt(x))/x) + 1/6*(x - 2)*sqrt(x)*sqrt((x + 1)/x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \operatorname{acsch}{\left (\sqrt{x} \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*acsch(x**(1/2)),x)

[Out]

Integral(x*acsch(sqrt(x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \operatorname{arcsch}\left (\sqrt{x}\right )\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccsch(x^(1/2)),x, algorithm="giac")

[Out]

integrate(x*arccsch(sqrt(x)), x)