3.882 $$\int e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a^2 x^2}} x \, dx$$

Optimal. Leaf size=71 $\frac{x^2 \sqrt{c-\frac{c}{a^2 x^2}}}{2 \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{x \sqrt{c-\frac{c}{a^2 x^2}}}{a \sqrt{1-\frac{1}{a^2 x^2}}}$

[Out]

(Sqrt[c - c/(a^2*x^2)]*x)/(a*Sqrt[1 - 1/(a^2*x^2)]) + (Sqrt[c - c/(a^2*x^2)]*x^2)/(2*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.172292, antiderivative size = 71, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.087, Rules used = {6197, 6193} $\frac{x^2 \sqrt{c-\frac{c}{a^2 x^2}}}{2 \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{x \sqrt{c-\frac{c}{a^2 x^2}}}{a \sqrt{1-\frac{1}{a^2 x^2}}}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^ArcCoth[a*x]*Sqrt[c - c/(a^2*x^2)]*x,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*x)/(a*Sqrt[1 - 1/(a^2*x^2)]) + (Sqrt[c - c/(a^2*x^2)]*x^2)/(2*Sqrt[1 - 1/(a^2*x^2)])

Rule 6197

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Dist[(c^IntPart[p]*(c + d/x^2
)^FracPart[p])/(1 - 1/(a^2*x^2))^FracPart[p], Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a
, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
+ a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rubi steps

\begin{align*} \int e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a^2 x^2}} x \, dx &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} \int e^{\coth ^{-1}(a x)} \sqrt{1-\frac{1}{a^2 x^2}} x \, dx}{\sqrt{1-\frac{1}{a^2 x^2}}}\\ &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} \int (1+a x) \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}}}\\ &=\frac{\sqrt{c-\frac{c}{a^2 x^2}} x}{a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{\sqrt{c-\frac{c}{a^2 x^2}} x^2}{2 \sqrt{1-\frac{1}{a^2 x^2}}}\\ \end{align*}

Mathematica [A]  time = 0.0233064, size = 43, normalized size = 0.61 $\frac{\left (\frac{a x^2}{2}+x\right ) \sqrt{c-\frac{c}{a^2 x^2}}}{a \sqrt{1-\frac{1}{a^2 x^2}}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[E^ArcCoth[a*x]*Sqrt[c - c/(a^2*x^2)]*x,x]

[Out]

(Sqrt[c - c/(a^2*x^2)]*(x + (a*x^2)/2))/(a*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.121, size = 52, normalized size = 0.7 \begin{align*}{\frac{ \left ( ax+2 \right ){x}^{2}}{2\,ax+2}\sqrt{{\frac{c \left ({a}^{2}{x}^{2}-1 \right ) }{{a}^{2}{x}^{2}}}}{\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*x*(c-c/a^2/x^2)^(1/2),x)

[Out]

1/2*x^2*(a*x+2)*(c*(a^2*x^2-1)/a^2/x^2)^(1/2)/(a*x+1)/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a^{2} x^{2}}} x}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x*(c-c/a^2/x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a^2*x^2))*x/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.56274, size = 47, normalized size = 0.66 \begin{align*} \frac{\sqrt{a^{2} c}{\left (a x^{2} + 2 \, x\right )}}{2 \, a^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x*(c-c/a^2/x^2)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(a^2*c)*(a*x^2 + 2*x)/a^2

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*x*(c-c/a**2/x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a^{2} x^{2}}} x}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x*(c-c/a^2/x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a^2*x^2))*x/sqrt((a*x - 1)/(a*x + 1)), x)