### 3.795 $$\int \frac{e^{3 \coth ^{-1}(a x)}}{(c-\frac{c}{a^2 x^2})^3} \, dx$$

Optimal. Leaf size=255 $\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{\frac{1}{a x}+1}}+\frac{176 \sqrt{1-\frac{1}{a x}}}{35 a c^3 \sqrt{\frac{1}{a x}+1}}-\frac{281}{35 a c^3 \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{\frac{1}{a x}+1}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{\frac{1}{a x}+1}}-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{\frac{1}{a x}+1}}+\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{a c^3}$

[Out]

-8/(7*a*c^3*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]) - 53/(35*a*c^3*(1 - 1/(a*x))^(5/2)*Sqrt[1 + 1/(a*x)]) - 88/
(35*a*c^3*(1 - 1/(a*x))^(3/2)*Sqrt[1 + 1/(a*x)]) - 281/(35*a*c^3*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]) + (176*S
qrt[1 - 1/(a*x)])/(35*a*c^3*Sqrt[1 + 1/(a*x)]) + x/(c^3*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]) + (3*ArcTanh[Sq
rt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/(a*c^3)

________________________________________________________________________________________

Rubi [A]  time = 0.172283, antiderivative size = 255, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 6, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.273, Rules used = {6194, 103, 152, 12, 92, 208} $\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{\frac{1}{a x}+1}}+\frac{176 \sqrt{1-\frac{1}{a x}}}{35 a c^3 \sqrt{\frac{1}{a x}+1}}-\frac{281}{35 a c^3 \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{\frac{1}{a x}+1}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{\frac{1}{a x}+1}}-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{\frac{1}{a x}+1}}+\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{a c^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(3*ArcCoth[a*x])/(c - c/(a^2*x^2))^3,x]

[Out]

-8/(7*a*c^3*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]) - 53/(35*a*c^3*(1 - 1/(a*x))^(5/2)*Sqrt[1 + 1/(a*x)]) - 88/
(35*a*c^3*(1 - 1/(a*x))^(3/2)*Sqrt[1 + 1/(a*x)]) - 281/(35*a*c^3*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]) + (176*S
qrt[1 - 1/(a*x)])/(35*a*c^3*Sqrt[1 + 1/(a*x)]) + x/(c^3*(1 - 1/(a*x))^(7/2)*Sqrt[1 + 1/(a*x)]) + (3*ArcTanh[Sq
rt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/(a*c^3)

Rule 6194

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> -Dist[c^p, Subst[Int[((1 - x/a)^(p
- n/2)*(1 + x/a)^(p + n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !Integ
erQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{3 \coth ^{-1}(a x)}}{\left (c-\frac{c}{a^2 x^2}\right )^3} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1}{x^2 \left (1-\frac{x}{a}\right )^{9/2} \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{c^3}\\ &=\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}+\frac{\operatorname{Subst}\left (\int \frac{-\frac{3}{a}-\frac{5 x}{a^2}}{x \left (1-\frac{x}{a}\right )^{9/2} \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{a \operatorname{Subst}\left (\int \frac{\frac{21}{a^2}+\frac{32 x}{a^3}}{x \left (1-\frac{x}{a}\right )^{7/2} \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{7 c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}+\frac{a^2 \operatorname{Subst}\left (\int \frac{-\frac{105}{a^3}-\frac{159 x}{a^4}}{x \left (1-\frac{x}{a}\right )^{5/2} \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{35 c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{1+\frac{1}{a x}}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{a^3 \operatorname{Subst}\left (\int \frac{\frac{315}{a^4}+\frac{528 x}{a^5}}{x \left (1-\frac{x}{a}\right )^{3/2} \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{105 c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{1+\frac{1}{a x}}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}}}-\frac{281}{35 a c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}+\frac{a^4 \operatorname{Subst}\left (\int \frac{-\frac{315}{a^5}-\frac{843 x}{a^6}}{x \sqrt{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{105 c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{1+\frac{1}{a x}}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}}}-\frac{281}{35 a c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}+\frac{176 \sqrt{1-\frac{1}{a x}}}{35 a c^3 \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}+\frac{a^5 \operatorname{Subst}\left (\int -\frac{315}{a^6 x \sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{105 c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{1+\frac{1}{a x}}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}}}-\frac{281}{35 a c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}+\frac{176 \sqrt{1-\frac{1}{a x}}}{35 a c^3 \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{a c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{1+\frac{1}{a x}}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}}}-\frac{281}{35 a c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}+\frac{176 \sqrt{1-\frac{1}{a x}}}{35 a c^3 \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a}-\frac{x^2}{a}} \, dx,x,\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{a^2 c^3}\\ &=-\frac{8}{7 a c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}-\frac{53}{35 a c^3 \left (1-\frac{1}{a x}\right )^{5/2} \sqrt{1+\frac{1}{a x}}}-\frac{88}{35 a c^3 \left (1-\frac{1}{a x}\right )^{3/2} \sqrt{1+\frac{1}{a x}}}-\frac{281}{35 a c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}+\frac{176 \sqrt{1-\frac{1}{a x}}}{35 a c^3 \sqrt{1+\frac{1}{a x}}}+\frac{x}{c^3 \left (1-\frac{1}{a x}\right )^{7/2} \sqrt{1+\frac{1}{a x}}}+\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{a c^3}\\ \end{align*}

Mathematica [A]  time = 0.208061, size = 101, normalized size = 0.4 $\frac{\frac{a x \sqrt{1-\frac{1}{a^2 x^2}} \left (35 a^5 x^5-286 a^4 x^4+368 a^3 x^3+125 a^2 x^2-423 a x+176\right )}{35 (a x-1)^4 (a x+1)}+3 \log \left (x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )}{a c^3}$

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcCoth[a*x])/(c - c/(a^2*x^2))^3,x]

[Out]

((a*Sqrt[1 - 1/(a^2*x^2)]*x*(176 - 423*a*x + 125*a^2*x^2 + 368*a^3*x^3 - 286*a^4*x^4 + 35*a^5*x^5))/(35*(-1 +
a*x)^4*(1 + a*x)) + 3*Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x])/(a*c^3)

________________________________________________________________________________________

Maple [B]  time = 0.206, size = 714, normalized size = 2.8 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)/(c-c/a^2/x^2)^3,x)

[Out]

1/1120*(3360*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x^7*a^8+3675*(a^2)^(1/2)*((a*x-1)*(a*
x+1))^(1/2)*x^7*a^7-10080*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x^6*a^7-2555*(a^2)^(1/2)
*((a*x-1)*(a*x+1))^(3/2)*x^5*a^5-11025*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x^6*a^6+3360*ln((a^2*x+(a^2)^(1/2)*
((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x^5*a^6+1873*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(3/2)*x^4*a^4+3675*(a^2)^(1/2
)*((a*x-1)*(a*x+1))^(1/2)*x^5*a^5+16800*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x^4*a^5+44
26*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(3/2)*x^3*a^3+18375*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x^4*a^4-16800*ln((a^2
*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x^3*a^4-3350*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(3/2)*x^2*a^2-
18375*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x^3*a^3-3360*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1
/2))*x^2*a^3-2511*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(3/2)*x*a-3675*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x^2*a^2+100
80*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x*a^2+1957*((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)+
11025*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x*a-3360*a*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2
))-3675*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/a/(a^2)^(1/2)/(a*x-1)^3/c^3/((a*x-1)*(a*x+1))^(1/2)/(a*x+1)^3/((a
*x-1)/(a*x+1))^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 1.02702, size = 259, normalized size = 1.02 \begin{align*} \frac{1}{560} \, a{\left (\frac{\frac{51 \,{\left (a x - 1\right )}}{a x + 1} + \frac{294 \,{\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + \frac{2170 \,{\left (a x - 1\right )}^{3}}{{\left (a x + 1\right )}^{3}} - \frac{3640 \,{\left (a x - 1\right )}^{4}}{{\left (a x + 1\right )}^{4}} + 5}{a^{2} c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{9}{2}} - a^{2} c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{7}{2}}} + \frac{1680 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{3}} - \frac{1680 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2} c^{3}} + \frac{35 \, \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2} c^{3}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)/(c-c/a^2/x^2)^3,x, algorithm="maxima")

[Out]

1/560*a*((51*(a*x - 1)/(a*x + 1) + 294*(a*x - 1)^2/(a*x + 1)^2 + 2170*(a*x - 1)^3/(a*x + 1)^3 - 3640*(a*x - 1)
^4/(a*x + 1)^4 + 5)/(a^2*c^3*((a*x - 1)/(a*x + 1))^(9/2) - a^2*c^3*((a*x - 1)/(a*x + 1))^(7/2)) + 1680*log(sqr
t((a*x - 1)/(a*x + 1)) + 1)/(a^2*c^3) - 1680*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/(a^2*c^3) + 35*sqrt((a*x - 1)/
(a*x + 1))/(a^2*c^3))

________________________________________________________________________________________

Fricas [A]  time = 1.65872, size = 468, normalized size = 1.84 \begin{align*} \frac{105 \,{\left (a^{4} x^{4} - 4 \, a^{3} x^{3} + 6 \, a^{2} x^{2} - 4 \, a x + 1\right )} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 105 \,{\left (a^{4} x^{4} - 4 \, a^{3} x^{3} + 6 \, a^{2} x^{2} - 4 \, a x + 1\right )} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right ) +{\left (35 \, a^{5} x^{5} - 286 \, a^{4} x^{4} + 368 \, a^{3} x^{3} + 125 \, a^{2} x^{2} - 423 \, a x + 176\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{35 \,{\left (a^{5} c^{3} x^{4} - 4 \, a^{4} c^{3} x^{3} + 6 \, a^{3} c^{3} x^{2} - 4 \, a^{2} c^{3} x + a c^{3}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)/(c-c/a^2/x^2)^3,x, algorithm="fricas")

[Out]

1/35*(105*(a^4*x^4 - 4*a^3*x^3 + 6*a^2*x^2 - 4*a*x + 1)*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 105*(a^4*x^4 - 4*
a^3*x^3 + 6*a^2*x^2 - 4*a*x + 1)*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (35*a^5*x^5 - 286*a^4*x^4 + 368*a^3*x^3
+ 125*a^2*x^2 - 423*a*x + 176)*sqrt((a*x - 1)/(a*x + 1)))/(a^5*c^3*x^4 - 4*a^4*c^3*x^3 + 6*a^3*c^3*x^2 - 4*a^2
*c^3*x + a*c^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)/(c-c/a**2/x**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.27798, size = 277, normalized size = 1.09 \begin{align*} \frac{1}{560} \, a{\left (\frac{1680 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2} c^{3}} - \frac{1680 \, \log \left ({\left | \sqrt{\frac{a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2} c^{3}} - \frac{{\left (a x + 1\right )}^{3}{\left (\frac{56 \,{\left (a x - 1\right )}}{a x + 1} + \frac{350 \,{\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + \frac{2520 \,{\left (a x - 1\right )}^{3}}{{\left (a x + 1\right )}^{3}} + 5\right )}}{{\left (a x - 1\right )}^{3} a^{2} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}} + \frac{35 \, \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2} c^{3}} - \frac{1120 \, \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2} c^{3}{\left (\frac{a x - 1}{a x + 1} - 1\right )}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)/(c-c/a^2/x^2)^3,x, algorithm="giac")

[Out]

1/560*a*(1680*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/(a^2*c^3) - 1680*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/(a^2
*c^3) - (a*x + 1)^3*(56*(a*x - 1)/(a*x + 1) + 350*(a*x - 1)^2/(a*x + 1)^2 + 2520*(a*x - 1)^3/(a*x + 1)^3 + 5)/
((a*x - 1)^3*a^2*c^3*sqrt((a*x - 1)/(a*x + 1))) + 35*sqrt((a*x - 1)/(a*x + 1))/(a^2*c^3) - 1120*sqrt((a*x - 1)
/(a*x + 1))/(a^2*c^3*((a*x - 1)/(a*x + 1) - 1)))