### 3.790 $$\int e^{3 \coth ^{-1}(a x)} (c-\frac{c}{a^2 x^2})^3 \, dx$$

Optimal. Leaf size=269 $c^3 x \left (1-\frac{1}{a x}\right )^{3/2} \left (\frac{1}{a x}+1\right )^{9/2}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{9/2}}{5 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}}{20 a}-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}}{20 a}-\frac{17 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}}{8 a}-\frac{27 c^3 \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}}{8 a}+\frac{3 c^3 \csc ^{-1}(a x)}{8 a}+\frac{3 c^3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{a}$

[Out]

(-27*c^3*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)])/(8*a) - (17*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2))/(8*a) - (
29*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2))/(20*a) - (21*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/2))/(20*a) +
(6*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(9/2))/(5*a) + c^3*(1 - 1/(a*x))^(3/2)*(1 + 1/(a*x))^(9/2)*x + (3*c^3*
ArcCsc[a*x])/(8*a) + (3*c^3*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/a

________________________________________________________________________________________

Rubi [A]  time = 0.191917, antiderivative size = 269, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.364, Rules used = {6194, 97, 154, 157, 41, 216, 92, 208} $c^3 x \left (1-\frac{1}{a x}\right )^{3/2} \left (\frac{1}{a x}+1\right )^{9/2}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{9/2}}{5 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}}{20 a}-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}}{20 a}-\frac{17 c^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}}{8 a}-\frac{27 c^3 \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}}{8 a}+\frac{3 c^3 \csc ^{-1}(a x)}{8 a}+\frac{3 c^3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{a}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(3*ArcCoth[a*x])*(c - c/(a^2*x^2))^3,x]

[Out]

(-27*c^3*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)])/(8*a) - (17*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2))/(8*a) - (
29*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2))/(20*a) - (21*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/2))/(20*a) +
(6*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(9/2))/(5*a) + c^3*(1 - 1/(a*x))^(3/2)*(1 + 1/(a*x))^(9/2)*x + (3*c^3*
ArcCsc[a*x])/(8*a) + (3*c^3*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/a

Rule 6194

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> -Dist[c^p, Subst[Int[((1 - x/a)^(p
- n/2)*(1 + x/a)^(p + n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !Integ
erQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2]

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
+ p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
:> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{3 \coth ^{-1}(a x)} \left (c-\frac{c}{a^2 x^2}\right )^3 \, dx &=-\left (c^3 \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{3/2} \left (1+\frac{x}{a}\right )^{9/2}}{x^2} \, dx,x,\frac{1}{x}\right )\right )\\ &=c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x-c^3 \operatorname{Subst}\left (\int \frac{\left (\frac{3}{a}-\frac{6 x}{a^2}\right ) \sqrt{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{7/2}}{x} \, dx,x,\frac{1}{x}\right )\\ &=\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x-\frac{1}{5} \left (a c^3\right ) \operatorname{Subst}\left (\int \frac{\left (\frac{15}{a^2}-\frac{21 x}{a^3}\right ) \left (1+\frac{x}{a}\right )^{7/2}}{x \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2}}{20 a}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x+\frac{1}{20} \left (a^2 c^3\right ) \operatorname{Subst}\left (\int \frac{\left (-\frac{60}{a^3}+\frac{87 x}{a^4}\right ) \left (1+\frac{x}{a}\right )^{5/2}}{x \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2}}{20 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2}}{20 a}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x-\frac{1}{60} \left (a^3 c^3\right ) \operatorname{Subst}\left (\int \frac{\left (\frac{180}{a^4}-\frac{255 x}{a^5}\right ) \left (1+\frac{x}{a}\right )^{3/2}}{x \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{17 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2}}{8 a}-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2}}{20 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2}}{20 a}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x+\frac{1}{120} \left (a^4 c^3\right ) \operatorname{Subst}\left (\int \frac{\left (-\frac{360}{a^5}+\frac{405 x}{a^6}\right ) \sqrt{1+\frac{x}{a}}}{x \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{27 c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}{8 a}-\frac{17 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2}}{8 a}-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2}}{20 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2}}{20 a}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x-\frac{1}{120} \left (a^5 c^3\right ) \operatorname{Subst}\left (\int \frac{\frac{360}{a^6}-\frac{45 x}{a^7}}{x \sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{27 c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}{8 a}-\frac{17 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2}}{8 a}-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2}}{20 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2}}{20 a}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x+\frac{\left (3 c^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{8 a^2}-\frac{\left (3 c^3\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{a}\\ &=-\frac{27 c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}{8 a}-\frac{17 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2}}{8 a}-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2}}{20 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2}}{20 a}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x+\frac{\left (3 c^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{8 a^2}+\frac{\left (3 c^3\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a}-\frac{x^2}{a}} \, dx,x,\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{a^2}\\ &=-\frac{27 c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}}{8 a}-\frac{17 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2}}{8 a}-\frac{29 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2}}{20 a}-\frac{21 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2}}{20 a}+\frac{6 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2}}{5 a}+c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{9/2} x+\frac{3 c^3 \csc ^{-1}(a x)}{8 a}+\frac{3 c^3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{a}\\ \end{align*}

Mathematica [A]  time = 0.187653, size = 110, normalized size = 0.41 $\frac{c^3 \left (\sqrt{1-\frac{1}{a^2 x^2}} \left (40 a^5 x^5-152 a^4 x^4-55 a^3 x^3+24 a^2 x^2+30 a x+8\right )+120 a^4 x^4 \log \left (x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )+15 a^4 x^4 \sin ^{-1}\left (\frac{1}{a x}\right )\right )}{40 a^5 x^4}$

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcCoth[a*x])*(c - c/(a^2*x^2))^3,x]

[Out]

(c^3*(Sqrt[1 - 1/(a^2*x^2)]*(8 + 30*a*x + 24*a^2*x^2 - 55*a^3*x^3 - 152*a^4*x^4 + 40*a^5*x^5) + 15*a^4*x^4*Arc
Sin[1/(a*x)] + 120*a^4*x^4*Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/(40*a^5*x^4)

________________________________________________________________________________________

Maple [A]  time = 0.189, size = 281, normalized size = 1. \begin{align*}{\frac{ \left ( ax-1 \right ) ^{2}{c}^{3}}{ \left ( 40\,ax+40 \right ){a}^{6}{x}^{5}} \left ( -120\,\sqrt{{a}^{2}}\sqrt{{a}^{2}{x}^{2}-1}{x}^{6}{a}^{6}+120\,\sqrt{{a}^{2}} \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}{x}^{4}{a}^{4}+15\,\sqrt{{a}^{2}{x}^{2}-1}\sqrt{{a}^{2}}{x}^{5}{a}^{5}+15\,\sqrt{{a}^{2}}\arctan \left ({\frac{1}{\sqrt{{a}^{2}{x}^{2}-1}}} \right ){x}^{5}{a}^{5}+120\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}{x}^{2}-1}\sqrt{{a}^{2}}}{\sqrt{{a}^{2}}}} \right ){x}^{5}{a}^{6}+25\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{3}{a}^{3}-32\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{2}{a}^{2}-30\,\sqrt{{a}^{2}} \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}xa-8\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}} \right ) \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}}{\frac{1}{\sqrt{{a}^{2}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^3,x)

[Out]

1/40*(a*x-1)^2*c^3*(-120*(a^2)^(1/2)*(a^2*x^2-1)^(1/2)*x^6*a^6+120*(a^2)^(1/2)*(a^2*x^2-1)^(3/2)*x^4*a^4+15*(a
^2*x^2-1)^(1/2)*(a^2)^(1/2)*x^5*a^5+15*(a^2)^(1/2)*arctan(1/(a^2*x^2-1)^(1/2))*x^5*a^5+120*ln((a^2*x+(a^2*x^2-
1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*x^5*a^6+25*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)*x^3*a^3-32*(a^2*x^2-1)^(3/2)*(a^2)
^(1/2)*x^2*a^2-30*(a^2)^(1/2)*(a^2*x^2-1)^(3/2)*x*a-8*(a^2*x^2-1)^(3/2)*(a^2)^(1/2))/((a*x-1)/(a*x+1))^(3/2)/(
a*x+1)/((a*x-1)*(a*x+1))^(1/2)/a^6/x^5/(a^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.53196, size = 408, normalized size = 1.52 \begin{align*} -\frac{1}{20} \,{\left (\frac{15 \, c^{3} \arctan \left (\sqrt{\frac{a x - 1}{a x + 1}}\right )}{a^{2}} - \frac{60 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} + \frac{60 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2}} - \frac{135 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{11}{2}} + 575 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{9}{2}} + 842 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{7}{2}} + 298 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{2}} - 465 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}} - 105 \, c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{\frac{4 \,{\left (a x - 1\right )} a^{2}}{a x + 1} + \frac{5 \,{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} - \frac{5 \,{\left (a x - 1\right )}^{4} a^{2}}{{\left (a x + 1\right )}^{4}} - \frac{4 \,{\left (a x - 1\right )}^{5} a^{2}}{{\left (a x + 1\right )}^{5}} - \frac{{\left (a x - 1\right )}^{6} a^{2}}{{\left (a x + 1\right )}^{6}} + a^{2}}\right )} a \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^3,x, algorithm="maxima")

[Out]

-1/20*(15*c^3*arctan(sqrt((a*x - 1)/(a*x + 1)))/a^2 - 60*c^3*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 + 60*c^3*l
og(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2 - (135*c^3*((a*x - 1)/(a*x + 1))^(11/2) + 575*c^3*((a*x - 1)/(a*x + 1))^
(9/2) + 842*c^3*((a*x - 1)/(a*x + 1))^(7/2) + 298*c^3*((a*x - 1)/(a*x + 1))^(5/2) - 465*c^3*((a*x - 1)/(a*x +
1))^(3/2) - 105*c^3*sqrt((a*x - 1)/(a*x + 1)))/(4*(a*x - 1)*a^2/(a*x + 1) + 5*(a*x - 1)^2*a^2/(a*x + 1)^2 - 5*
(a*x - 1)^4*a^2/(a*x + 1)^4 - 4*(a*x - 1)^5*a^2/(a*x + 1)^5 - (a*x - 1)^6*a^2/(a*x + 1)^6 + a^2))*a

________________________________________________________________________________________

Fricas [A]  time = 1.71341, size = 419, normalized size = 1.56 \begin{align*} -\frac{30 \, a^{5} c^{3} x^{5} \arctan \left (\sqrt{\frac{a x - 1}{a x + 1}}\right ) - 120 \, a^{5} c^{3} x^{5} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) + 120 \, a^{5} c^{3} x^{5} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right ) -{\left (40 \, a^{6} c^{3} x^{6} - 112 \, a^{5} c^{3} x^{5} - 207 \, a^{4} c^{3} x^{4} - 31 \, a^{3} c^{3} x^{3} + 54 \, a^{2} c^{3} x^{2} + 38 \, a c^{3} x + 8 \, c^{3}\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{40 \, a^{6} x^{5}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^3,x, algorithm="fricas")

[Out]

-1/40*(30*a^5*c^3*x^5*arctan(sqrt((a*x - 1)/(a*x + 1))) - 120*a^5*c^3*x^5*log(sqrt((a*x - 1)/(a*x + 1)) + 1) +
120*a^5*c^3*x^5*log(sqrt((a*x - 1)/(a*x + 1)) - 1) - (40*a^6*c^3*x^6 - 112*a^5*c^3*x^5 - 207*a^4*c^3*x^4 - 31
*a^3*c^3*x^3 + 54*a^2*c^3*x^2 + 38*a*c^3*x + 8*c^3)*sqrt((a*x - 1)/(a*x + 1)))/(a^6*x^5)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(c-c/a**2/x**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2177, size = 401, normalized size = 1.49 \begin{align*} -\frac{1}{20} \,{\left (\frac{15 \, c^{3} \arctan \left (\sqrt{\frac{a x - 1}{a x + 1}}\right )}{a^{2}} - \frac{60 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} + \frac{60 \, c^{3} \log \left ({\left | \sqrt{\frac{a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2}} + \frac{40 \, c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2}{\left (\frac{a x - 1}{a x + 1} - 1\right )}} + \frac{\frac{810 \,{\left (a x - 1\right )} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{a x + 1} + \frac{912 \,{\left (a x - 1\right )}^{2} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{2}} + \frac{470 \,{\left (a x - 1\right )}^{3} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{3}} + \frac{95 \,{\left (a x - 1\right )}^{4} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{4}} + 145 \, c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2}{\left (\frac{a x - 1}{a x + 1} + 1\right )}^{5}}\right )} a \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a^2/x^2)^3,x, algorithm="giac")

[Out]

-1/20*(15*c^3*arctan(sqrt((a*x - 1)/(a*x + 1)))/a^2 - 60*c^3*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 + 60*c^3*l
og(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^2 + 40*c^3*sqrt((a*x - 1)/(a*x + 1))/(a^2*((a*x - 1)/(a*x + 1) - 1))
+ (810*(a*x - 1)*c^3*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1) + 912*(a*x - 1)^2*c^3*sqrt((a*x - 1)/(a*x + 1))/(a*x
+ 1)^2 + 470*(a*x - 1)^3*c^3*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1)^3 + 95*(a*x - 1)^4*c^3*sqrt((a*x - 1)/(a*x +
1))/(a*x + 1)^4 + 145*c^3*sqrt((a*x - 1)/(a*x + 1)))/(a^2*((a*x - 1)/(a*x + 1) + 1)^5))*a