3.76 \(\int \frac{e^{\frac{3}{2} \coth ^{-1}(a x)}}{x^4} \, dx\)

Optimal. Leaf size=356 \[ \frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/4}+\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/4}}{3 x}-\frac{17 a^3 \log \left (\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{\frac{1}{a x}+1}}-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}+1\right )}{16 \sqrt{2}}+\frac{17 a^3 \log \left (\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{\frac{1}{a x}+1}}+\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}+1\right )}{16 \sqrt{2}}-\frac{17 a^3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}\right )}{8 \sqrt{2}}+\frac{17 a^3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}+1\right )}{8 \sqrt{2}} \]

[Out]

(17*a^3*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4))/24 + (a^3*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(7/4))/4 + (a^2*(
1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(7/4))/(3*x) - (17*a^3*ArcTan[1 - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))
^(1/4)])/(8*Sqrt[2]) + (17*a^3*ArcTan[1 + (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)])/(8*Sqrt[2]) - (1
7*a^3*Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 + 1/(a*x)] - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)])/(16*Sq
rt[2]) + (17*a^3*Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 + 1/(a*x)] + (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/
4)])/(16*Sqrt[2])

________________________________________________________________________________________

Rubi [A]  time = 0.281635, antiderivative size = 356, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.857, Rules used = {6171, 90, 80, 50, 63, 240, 211, 1165, 628, 1162, 617, 204} \[ \frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/4}+\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/4}}{3 x}-\frac{17 a^3 \log \left (\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{\frac{1}{a x}+1}}-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}+1\right )}{16 \sqrt{2}}+\frac{17 a^3 \log \left (\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{\frac{1}{a x}+1}}+\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}+1\right )}{16 \sqrt{2}}-\frac{17 a^3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}\right )}{8 \sqrt{2}}+\frac{17 a^3 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{\frac{1}{a x}+1}}+1\right )}{8 \sqrt{2}} \]

Antiderivative was successfully verified.

[In]

Int[E^((3*ArcCoth[a*x])/2)/x^4,x]

[Out]

(17*a^3*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(3/4))/24 + (a^3*(1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(7/4))/4 + (a^2*(
1 - 1/(a*x))^(1/4)*(1 + 1/(a*x))^(7/4))/(3*x) - (17*a^3*ArcTan[1 - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))
^(1/4)])/(8*Sqrt[2]) + (17*a^3*ArcTan[1 + (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)])/(8*Sqrt[2]) - (1
7*a^3*Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 + 1/(a*x)] - (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/4)])/(16*Sq
rt[2]) + (17*a^3*Log[1 + Sqrt[1 - 1/(a*x)]/Sqrt[1 + 1/(a*x)] + (Sqrt[2]*(1 - 1/(a*x))^(1/4))/(1 + 1/(a*x))^(1/
4)])/(16*Sqrt[2])

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 240

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{\frac{3}{2} \coth ^{-1}(a x)}}{x^4} \, dx &=-\operatorname{Subst}\left (\int \frac{x^2 \left (1+\frac{x}{a}\right )^{3/4}}{\left (1-\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}+\frac{1}{3} a^2 \operatorname{Subst}\left (\int \frac{\left (-1-\frac{3 x}{2 a}\right ) \left (1+\frac{x}{a}\right )^{3/4}}{\left (1-\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}-\frac{1}{24} \left (17 a^2\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{3/4}}{\left (1-\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/4}+\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}-\frac{1}{16} \left (17 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{x}{a}\right )^{3/4} \sqrt [4]{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/4}+\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}+\frac{1}{4} \left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [4]{2-x^4}} \, dx,x,\sqrt [4]{1-\frac{1}{a x}}\right )\\ &=\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/4}+\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}+\frac{1}{4} \left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )\\ &=\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/4}+\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}+\frac{1}{8} \left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )+\frac{1}{8} \left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\frac{\sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )\\ &=\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/4}+\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}+\frac{1}{16} \left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )+\frac{1}{16} \left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\frac{\sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )-\frac{\left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{16 \sqrt{2}}-\frac{\left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\frac{\sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{16 \sqrt{2}}\\ &=\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/4}+\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}-\frac{17 a^3 \log \left (1+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{16 \sqrt{2}}+\frac{17 a^3 \log \left (1+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}+\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{16 \sqrt{2}}+\frac{\left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{8 \sqrt{2}}-\frac{\left (17 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{8 \sqrt{2}}\\ &=\frac{17}{24} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/4}+\frac{1}{4} a^3 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}+\frac{a^2 \sqrt [4]{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/4}}{3 x}-\frac{17 a^3 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{8 \sqrt{2}}+\frac{17 a^3 \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{8 \sqrt{2}}-\frac{17 a^3 \log \left (1+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}-\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{16 \sqrt{2}}+\frac{17 a^3 \log \left (1+\frac{\sqrt{1-\frac{1}{a x}}}{\sqrt{1+\frac{1}{a x}}}+\frac{\sqrt{2} \sqrt [4]{1-\frac{1}{a x}}}{\sqrt [4]{1+\frac{1}{a x}}}\right )}{16 \sqrt{2}}\\ \end{align*}

Mathematica [C]  time = 0.117398, size = 93, normalized size = 0.26 \[ \frac{1}{96} a^3 \left (51 \text{RootSum}\left [\text{$\#$1}^4+1\& ,\frac{\coth ^{-1}(a x)-2 \log \left (e^{\frac{1}{2} \coth ^{-1}(a x)}-\text{$\#$1}\right )}{\text{$\#$1}}\& \right ]+\frac{8 e^{\frac{3}{2} \coth ^{-1}(a x)} \left (30 e^{2 \coth ^{-1}(a x)}+45 e^{4 \coth ^{-1}(a x)}+17\right )}{\left (e^{2 \coth ^{-1}(a x)}+1\right )^3}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^((3*ArcCoth[a*x])/2)/x^4,x]

[Out]

(a^3*((8*E^((3*ArcCoth[a*x])/2)*(17 + 30*E^(2*ArcCoth[a*x]) + 45*E^(4*ArcCoth[a*x])))/(1 + E^(2*ArcCoth[a*x]))
^3 + 51*RootSum[1 + #1^4 & , (ArcCoth[a*x] - 2*Log[E^(ArcCoth[a*x]/2) - #1])/#1 & ]))/96

________________________________________________________________________________________

Maple [F]  time = 0.135, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{4}} \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/4)/x^4,x)

[Out]

int(1/((a*x-1)/(a*x+1))^(3/4)/x^4,x)

________________________________________________________________________________________

Maxima [A]  time = 1.49628, size = 374, normalized size = 1.05 \begin{align*} \frac{1}{96} \,{\left (102 \, \sqrt{2} a^{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}\right ) + 102 \, \sqrt{2} a^{2} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}\right ) + 51 \, \sqrt{2} a^{2} \log \left (\sqrt{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + \sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 51 \, \sqrt{2} a^{2} \log \left (-\sqrt{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + \sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) + \frac{8 \,{\left (17 \, a^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{9}{4}} + 30 \, a^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{4}} + 45 \, a^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}}{\frac{3 \,{\left (a x - 1\right )}}{a x + 1} + \frac{3 \,{\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} + \frac{{\left (a x - 1\right )}^{3}}{{\left (a x + 1\right )}^{3}} + 1}\right )} a \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x^4,x, algorithm="maxima")

[Out]

1/96*(102*sqrt(2)*a^2*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4))) + 102*sqrt(2)*a^2*arctan(-
1/2*sqrt(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/4))) + 51*sqrt(2)*a^2*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4
) + sqrt((a*x - 1)/(a*x + 1)) + 1) - 51*sqrt(2)*a^2*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/
(a*x + 1)) + 1) + 8*(17*a^2*((a*x - 1)/(a*x + 1))^(9/4) + 30*a^2*((a*x - 1)/(a*x + 1))^(5/4) + 45*a^2*((a*x -
1)/(a*x + 1))^(1/4))/(3*(a*x - 1)/(a*x + 1) + 3*(a*x - 1)^2/(a*x + 1)^2 + (a*x - 1)^3/(a*x + 1)^3 + 1))*a

________________________________________________________________________________________

Fricas [A]  time = 1.78408, size = 1133, normalized size = 3.18 \begin{align*} -\frac{204 \, \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} x^{3} \arctan \left (-\frac{a^{12} + \sqrt{2}{\left (a^{12}\right )}^{\frac{3}{4}} a^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} - \sqrt{2}{\left (a^{12}\right )}^{\frac{3}{4}} \sqrt{a^{6} \sqrt{\frac{a x - 1}{a x + 1}} + \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} a^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + \sqrt{a^{12}}}}{a^{12}}\right ) + 204 \, \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} x^{3} \arctan \left (\frac{a^{12} - \sqrt{2}{\left (a^{12}\right )}^{\frac{3}{4}} a^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + \sqrt{2}{\left (a^{12}\right )}^{\frac{3}{4}} \sqrt{a^{6} \sqrt{\frac{a x - 1}{a x + 1}} - \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} a^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + \sqrt{a^{12}}}}{a^{12}}\right ) - 51 \, \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} x^{3} \log \left (289 \, a^{6} \sqrt{\frac{a x - 1}{a x + 1}} + 289 \, \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} a^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 289 \, \sqrt{a^{12}}\right ) + 51 \, \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} x^{3} \log \left (289 \, a^{6} \sqrt{\frac{a x - 1}{a x + 1}} - 289 \, \sqrt{2}{\left (a^{12}\right )}^{\frac{1}{4}} a^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 289 \, \sqrt{a^{12}}\right ) - 4 \,{\left (23 \, a^{3} x^{3} + 37 \, a^{2} x^{2} + 22 \, a x + 8\right )} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{96 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x^4,x, algorithm="fricas")

[Out]

-1/96*(204*sqrt(2)*(a^12)^(1/4)*x^3*arctan(-(a^12 + sqrt(2)*(a^12)^(3/4)*a^3*((a*x - 1)/(a*x + 1))^(1/4) - sqr
t(2)*(a^12)^(3/4)*sqrt(a^6*sqrt((a*x - 1)/(a*x + 1)) + sqrt(2)*(a^12)^(1/4)*a^3*((a*x - 1)/(a*x + 1))^(1/4) +
sqrt(a^12)))/a^12) + 204*sqrt(2)*(a^12)^(1/4)*x^3*arctan((a^12 - sqrt(2)*(a^12)^(3/4)*a^3*((a*x - 1)/(a*x + 1)
)^(1/4) + sqrt(2)*(a^12)^(3/4)*sqrt(a^6*sqrt((a*x - 1)/(a*x + 1)) - sqrt(2)*(a^12)^(1/4)*a^3*((a*x - 1)/(a*x +
 1))^(1/4) + sqrt(a^12)))/a^12) - 51*sqrt(2)*(a^12)^(1/4)*x^3*log(289*a^6*sqrt((a*x - 1)/(a*x + 1)) + 289*sqrt
(2)*(a^12)^(1/4)*a^3*((a*x - 1)/(a*x + 1))^(1/4) + 289*sqrt(a^12)) + 51*sqrt(2)*(a^12)^(1/4)*x^3*log(289*a^6*s
qrt((a*x - 1)/(a*x + 1)) - 289*sqrt(2)*(a^12)^(1/4)*a^3*((a*x - 1)/(a*x + 1))^(1/4) + 289*sqrt(a^12)) - 4*(23*
a^3*x^3 + 37*a^2*x^2 + 22*a*x + 8)*((a*x - 1)/(a*x + 1))^(1/4))/x^3

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/4)/x**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.13451, size = 366, normalized size = 1.03 \begin{align*} \frac{1}{96} \,{\left (102 \, \sqrt{2} a^{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}\right ) + 102 \, \sqrt{2} a^{2} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}\right ) + 51 \, \sqrt{2} a^{2} \log \left (\sqrt{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + \sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 51 \, \sqrt{2} a^{2} \log \left (-\sqrt{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + \sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) + \frac{8 \,{\left (\frac{30 \,{\left (a x - 1\right )} a^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{a x + 1} + \frac{17 \,{\left (a x - 1\right )}^{2} a^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{{\left (a x + 1\right )}^{2}} + 45 \, a^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}}{{\left (\frac{a x - 1}{a x + 1} + 1\right )}^{3}}\right )} a \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/4)/x^4,x, algorithm="giac")

[Out]

1/96*(102*sqrt(2)*a^2*arctan(1/2*sqrt(2)*(sqrt(2) + 2*((a*x - 1)/(a*x + 1))^(1/4))) + 102*sqrt(2)*a^2*arctan(-
1/2*sqrt(2)*(sqrt(2) - 2*((a*x - 1)/(a*x + 1))^(1/4))) + 51*sqrt(2)*a^2*log(sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4
) + sqrt((a*x - 1)/(a*x + 1)) + 1) - 51*sqrt(2)*a^2*log(-sqrt(2)*((a*x - 1)/(a*x + 1))^(1/4) + sqrt((a*x - 1)/
(a*x + 1)) + 1) + 8*(30*(a*x - 1)*a^2*((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1) + 17*(a*x - 1)^2*a^2*((a*x - 1)/(a
*x + 1))^(1/4)/(a*x + 1)^2 + 45*a^2*((a*x - 1)/(a*x + 1))^(1/4))/((a*x - 1)/(a*x + 1) + 1)^3)*a