3.723 \(\int e^{-3 \coth ^{-1}(a x)} x \sqrt{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=151 \[ \frac{x^2 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{3 x \sqrt{c-a^2 c x^2}}{2 a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{4 \sqrt{c-a^2 c x^2}}{a^2 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{4 \sqrt{c-a^2 c x^2} \log (a x+1)}{a^3 x \sqrt{1-\frac{1}{a^2 x^2}}} \]

[Out]

(4*Sqrt[c - a^2*c*x^2])/(a^2*Sqrt[1 - 1/(a^2*x^2)]) - (3*x*Sqrt[c - a^2*c*x^2])/(2*a*Sqrt[1 - 1/(a^2*x^2)]) +
(x^2*Sqrt[c - a^2*c*x^2])/(3*Sqrt[1 - 1/(a^2*x^2)]) - (4*Sqrt[c - a^2*c*x^2]*Log[1 + a*x])/(a^3*Sqrt[1 - 1/(a^
2*x^2)]*x)

________________________________________________________________________________________

Rubi [A]  time = 0.21185, antiderivative size = 151, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {6192, 6193, 77} \[ \frac{x^2 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{3 x \sqrt{c-a^2 c x^2}}{2 a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{4 \sqrt{c-a^2 c x^2}}{a^2 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{4 \sqrt{c-a^2 c x^2} \log (a x+1)}{a^3 x \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[c - a^2*c*x^2])/E^(3*ArcCoth[a*x]),x]

[Out]

(4*Sqrt[c - a^2*c*x^2])/(a^2*Sqrt[1 - 1/(a^2*x^2)]) - (3*x*Sqrt[c - a^2*c*x^2])/(2*a*Sqrt[1 - 1/(a^2*x^2)]) +
(x^2*Sqrt[c - a^2*c*x^2])/(3*Sqrt[1 - 1/(a^2*x^2)]) - (4*Sqrt[c - a^2*c*x^2]*Log[1 + a*x])/(a^3*Sqrt[1 - 1/(a^
2*x^2)]*x)

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int e^{-3 \coth ^{-1}(a x)} x \sqrt{c-a^2 c x^2} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{-3 \coth ^{-1}(a x)} \sqrt{1-\frac{1}{a^2 x^2}} x^2 \, dx}{\sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \frac{x (-1+a x)^2}{1+a x} \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \left (\frac{4}{a}-3 x+a x^2-\frac{4}{a (1+a x)}\right ) \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{4 \sqrt{c-a^2 c x^2}}{a^2 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{3 x \sqrt{c-a^2 c x^2}}{2 a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{x^2 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-\frac{1}{a^2 x^2}}}-\frac{4 \sqrt{c-a^2 c x^2} \log (1+a x)}{a^3 \sqrt{1-\frac{1}{a^2 x^2}} x}\\ \end{align*}

Mathematica [A]  time = 0.039138, size = 65, normalized size = 0.43 \[ \frac{\sqrt{c-a^2 c x^2} \left (a x \left (2 a^2 x^2-9 a x+24\right )-24 \log (a x+1)\right )}{6 a^3 x \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[c - a^2*c*x^2])/E^(3*ArcCoth[a*x]),x]

[Out]

(Sqrt[c - a^2*c*x^2]*(a*x*(24 - 9*a*x + 2*a^2*x^2) - 24*Log[1 + a*x]))/(6*a^3*Sqrt[1 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

Maple [A]  time = 0.131, size = 76, normalized size = 0.5 \begin{align*} -{\frac{ \left ( -2\,{x}^{3}{a}^{3}+9\,{a}^{2}{x}^{2}-24\,ax+24\,\ln \left ( ax+1 \right ) \right ) \left ( ax+1 \right ) }{6\,{a}^{2} \left ( ax-1 \right ) ^{2}}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) } \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x)

[Out]

-1/6*(-2*x^3*a^3+9*a^2*x^2-24*a*x+24*ln(a*x+1))*(-c*(a^2*x^2-1))^(1/2)*(a*x+1)*((a*x-1)/(a*x+1))^(3/2)/a^2/(a*
x-1)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-a^{2} c x^{2} + c} x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*x*((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.58555, size = 99, normalized size = 0.66 \begin{align*} \frac{{\left (2 \, a^{3} x^{3} - 9 \, a^{2} x^{2} + 24 \, a x - 24 \, \log \left (a x + 1\right )\right )} \sqrt{-a^{2} c}}{6 \, a^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

1/6*(2*a^3*x^3 - 9*a^2*x^2 + 24*a*x - 24*log(a*x + 1))*sqrt(-a^2*c)/a^3

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a**2*c*x**2+c)**(1/2)*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{-a^{2} c x^{2} + c} x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-a^2*c*x^2+c)^(1/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*x*((a*x - 1)/(a*x + 1))^(3/2), x)