3.706 $$\int \frac{e^{\coth ^{-1}(a x)}}{x^2 (c-a^2 c x^2)^{5/2}} \, dx$$

Optimal. Leaf size=307 $-\frac{3 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{4 (1-a x) \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (a x+1) \left (c-a^2 c x^2\right )^{5/2}}-\frac{a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (1-a x)^2 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^5 x^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{\left (c-a^2 c x^2\right )^{5/2}}-\frac{a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \log (x)}{\left (c-a^2 c x^2\right )^{5/2}}+\frac{23 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \log (1-a x)}{16 \left (c-a^2 c x^2\right )^{5/2}}-\frac{7 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \log (a x+1)}{16 \left (c-a^2 c x^2\right )^{5/2}}$

[Out]

(a^5*(1 - 1/(a^2*x^2))^(5/2)*x^4)/(c - a^2*c*x^2)^(5/2) - (a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(8*(1 - a*x)^2*(c
- a^2*c*x^2)^(5/2)) - (3*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(4*(1 - a*x)*(c - a^2*c*x^2)^(5/2)) + (a^6*(1 - 1/(a
^2*x^2))^(5/2)*x^5)/(8*(1 + a*x)*(c - a^2*c*x^2)^(5/2)) - (a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5*Log[x])/(c - a^2*c*
x^2)^(5/2) + (23*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5*Log[1 - a*x])/(16*(c - a^2*c*x^2)^(5/2)) - (7*a^6*(1 - 1/(a^2
*x^2))^(5/2)*x^5*Log[1 + a*x])/(16*(c - a^2*c*x^2)^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.292859, antiderivative size = 307, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.12, Rules used = {6192, 6193, 88} $-\frac{3 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{4 (1-a x) \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (a x+1) \left (c-a^2 c x^2\right )^{5/2}}-\frac{a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (1-a x)^2 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^5 x^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{\left (c-a^2 c x^2\right )^{5/2}}-\frac{a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \log (x)}{\left (c-a^2 c x^2\right )^{5/2}}+\frac{23 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \log (1-a x)}{16 \left (c-a^2 c x^2\right )^{5/2}}-\frac{7 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \log (a x+1)}{16 \left (c-a^2 c x^2\right )^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^ArcCoth[a*x]/(x^2*(c - a^2*c*x^2)^(5/2)),x]

[Out]

(a^5*(1 - 1/(a^2*x^2))^(5/2)*x^4)/(c - a^2*c*x^2)^(5/2) - (a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(8*(1 - a*x)^2*(c
- a^2*c*x^2)^(5/2)) - (3*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(4*(1 - a*x)*(c - a^2*c*x^2)^(5/2)) + (a^6*(1 - 1/(a
^2*x^2))^(5/2)*x^5)/(8*(1 + a*x)*(c - a^2*c*x^2)^(5/2)) - (a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5*Log[x])/(c - a^2*c*
x^2)^(5/2) + (23*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5*Log[1 - a*x])/(16*(c - a^2*c*x^2)^(5/2)) - (7*a^6*(1 - 1/(a^2
*x^2))^(5/2)*x^5*Log[1 + a*x])/(16*(c - a^2*c*x^2)^(5/2))

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
&& EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
+ a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rubi steps

\begin{align*} \int \frac{e^{\coth ^{-1}(a x)}}{x^2 \left (c-a^2 c x^2\right )^{5/2}} \, dx &=\frac{\left (\left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5\right ) \int \frac{e^{\coth ^{-1}(a x)}}{\left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^7} \, dx}{\left (c-a^2 c x^2\right )^{5/2}}\\ &=\frac{\left (a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5\right ) \int \frac{1}{x^2 (-1+a x)^3 (1+a x)^2} \, dx}{\left (c-a^2 c x^2\right )^{5/2}}\\ &=\frac{\left (a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5\right ) \int \left (-\frac{1}{x^2}-\frac{a}{x}+\frac{a^2}{4 (-1+a x)^3}-\frac{3 a^2}{4 (-1+a x)^2}+\frac{23 a^2}{16 (-1+a x)}-\frac{a^2}{8 (1+a x)^2}-\frac{7 a^2}{16 (1+a x)}\right ) \, dx}{\left (c-a^2 c x^2\right )^{5/2}}\\ &=\frac{a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^4}{\left (c-a^2 c x^2\right )^{5/2}}-\frac{a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{8 (1-a x)^2 \left (c-a^2 c x^2\right )^{5/2}}-\frac{3 a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{4 (1-a x) \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{8 (1+a x) \left (c-a^2 c x^2\right )^{5/2}}-\frac{a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5 \log (x)}{\left (c-a^2 c x^2\right )^{5/2}}+\frac{23 a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5 \log (1-a x)}{16 \left (c-a^2 c x^2\right )^{5/2}}-\frac{7 a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5 \log (1+a x)}{16 \left (c-a^2 c x^2\right )^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.0888769, size = 99, normalized size = 0.32 $\frac{a^5 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \left (\frac{12 a}{a x-1}+\frac{2 a}{a x+1}-\frac{2 a}{(a x-1)^2}-16 a \log (x)+23 a \log (1-a x)-7 a \log (a x+1)+\frac{16}{x}\right )}{16 \left (c-a^2 c x^2\right )^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[E^ArcCoth[a*x]/(x^2*(c - a^2*c*x^2)^(5/2)),x]

[Out]

(a^5*(1 - 1/(a^2*x^2))^(5/2)*x^5*(16/x - (2*a)/(-1 + a*x)^2 + (12*a)/(-1 + a*x) + (2*a)/(1 + a*x) - 16*a*Log[x
] + 23*a*Log[1 - a*x] - 7*a*Log[1 + a*x]))/(16*(c - a^2*c*x^2)^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.143, size = 225, normalized size = 0.7 \begin{align*}{\frac{16\,{a}^{4}\ln \left ( x \right ){x}^{4}+7\,\ln \left ( ax+1 \right ){a}^{4}{x}^{4}-23\,\ln \left ( ax-1 \right ){a}^{4}{x}^{4}-16\,{a}^{3}\ln \left ( x \right ){x}^{3}-7\,{a}^{3}{x}^{3}\ln \left ( ax+1 \right ) +23\,\ln \left ( ax-1 \right ){x}^{3}{a}^{3}-30\,{x}^{3}{a}^{3}-16\,{a}^{2}\ln \left ( x \right ){x}^{2}-7\,\ln \left ( ax+1 \right ){a}^{2}{x}^{2}+23\,\ln \left ( ax-1 \right ){a}^{2}{x}^{2}+22\,{a}^{2}{x}^{2}+16\,a\ln \left ( x \right ) x+7\,ax\ln \left ( ax+1 \right ) -23\,\ln \left ( ax-1 \right ) xa+28\,ax-16}{ \left ( 16\,ax-16 \right ) \left ({a}^{2}{x}^{2}-1 \right ){c}^{3}x \left ( ax+1 \right ) }\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) }{\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)/x^2/(-a^2*c*x^2+c)^(5/2),x)

[Out]

1/16/((a*x-1)/(a*x+1))^(1/2)/(a*x-1)*(-c*(a^2*x^2-1))^(1/2)*(16*a^4*ln(x)*x^4+7*ln(a*x+1)*a^4*x^4-23*ln(a*x-1)
*a^4*x^4-16*a^3*ln(x)*x^3-7*a^3*x^3*ln(a*x+1)+23*ln(a*x-1)*x^3*a^3-30*x^3*a^3-16*a^2*ln(x)*x^2-7*ln(a*x+1)*a^2
*x^2+23*ln(a*x-1)*a^2*x^2+22*a^2*x^2+16*a*ln(x)*x+7*a*x*ln(a*x+1)-23*ln(a*x-1)*x*a+28*a*x-16)/(a^2*x^2-1)/c^3/
x/(a*x+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{5}{2}} x^{2} \sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/x^2/(-a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((-a^2*c*x^2 + c)^(5/2)*x^2*sqrt((a*x - 1)/(a*x + 1))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.76535, size = 360, normalized size = 1.17 \begin{align*} -\frac{{\left (30 \, a^{3} x^{3} - 22 \, a^{2} x^{2} - 28 \, a x - 7 \,{\left (a^{4} x^{4} - a^{3} x^{3} - a^{2} x^{2} + a x\right )} \log \left (a x + 1\right ) + 23 \,{\left (a^{4} x^{4} - a^{3} x^{3} - a^{2} x^{2} + a x\right )} \log \left (a x - 1\right ) - 16 \,{\left (a^{4} x^{4} - a^{3} x^{3} - a^{2} x^{2} + a x\right )} \log \left (x\right ) + 16\right )} \sqrt{-a^{2} c}}{16 \,{\left (a^{4} c^{3} x^{4} - a^{3} c^{3} x^{3} - a^{2} c^{3} x^{2} + a c^{3} x\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/x^2/(-a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

-1/16*(30*a^3*x^3 - 22*a^2*x^2 - 28*a*x - 7*(a^4*x^4 - a^3*x^3 - a^2*x^2 + a*x)*log(a*x + 1) + 23*(a^4*x^4 - a
^3*x^3 - a^2*x^2 + a*x)*log(a*x - 1) - 16*(a^4*x^4 - a^3*x^3 - a^2*x^2 + a*x)*log(x) + 16)*sqrt(-a^2*c)/(a^4*c
^3*x^4 - a^3*c^3*x^3 - a^2*c^3*x^2 + a*c^3*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)/x**2/(-a**2*c*x**2+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{5}{2}} x^{2} \sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)/x^2/(-a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate(1/((-a^2*c*x^2 + c)^(5/2)*x^2*sqrt((a*x - 1)/(a*x + 1))), x)