3.686 \(\int \frac{e^{3 \coth ^{-1}(a x)} \sqrt{c-a^2 c x^2}}{x} \, dx\)

Optimal. Leaf size=114 \[ \frac{\sqrt{c-a^2 c x^2}}{\sqrt{1-\frac{1}{a^2 x^2}}}-\frac{\log (x) \sqrt{c-a^2 c x^2}}{a x \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{4 \sqrt{c-a^2 c x^2} \log (1-a x)}{a x \sqrt{1-\frac{1}{a^2 x^2}}} \]

[Out]

Sqrt[c - a^2*c*x^2]/Sqrt[1 - 1/(a^2*x^2)] - (Sqrt[c - a^2*c*x^2]*Log[x])/(a*Sqrt[1 - 1/(a^2*x^2)]*x) + (4*Sqrt
[c - a^2*c*x^2]*Log[1 - a*x])/(a*Sqrt[1 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

Rubi [A]  time = 0.161223, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {6192, 6193, 72} \[ \frac{\sqrt{c-a^2 c x^2}}{\sqrt{1-\frac{1}{a^2 x^2}}}-\frac{\log (x) \sqrt{c-a^2 c x^2}}{a x \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{4 \sqrt{c-a^2 c x^2} \log (1-a x)}{a x \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - a^2*c*x^2])/x,x]

[Out]

Sqrt[c - a^2*c*x^2]/Sqrt[1 - 1/(a^2*x^2)] - (Sqrt[c - a^2*c*x^2]*Log[x])/(a*Sqrt[1 - 1/(a^2*x^2)]*x) + (4*Sqrt
[c - a^2*c*x^2]*Log[1 - a*x])/(a*Sqrt[1 - 1/(a^2*x^2)]*x)

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rubi steps

\begin{align*} \int \frac{e^{3 \coth ^{-1}(a x)} \sqrt{c-a^2 c x^2}}{x} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{3 \coth ^{-1}(a x)} \sqrt{1-\frac{1}{a^2 x^2}} \, dx}{\sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \frac{(1+a x)^2}{x (-1+a x)} \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \left (a-\frac{1}{x}+\frac{4 a}{-1+a x}\right ) \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2}}{\sqrt{1-\frac{1}{a^2 x^2}}}-\frac{\sqrt{c-a^2 c x^2} \log (x)}{a \sqrt{1-\frac{1}{a^2 x^2}} x}+\frac{4 \sqrt{c-a^2 c x^2} \log (1-a x)}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ \end{align*}

Mathematica [A]  time = 0.033081, size = 53, normalized size = 0.46 \[ \frac{\sqrt{c-a^2 c x^2} (a x+4 \log (1-a x)-\log (x))}{a x \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - a^2*c*x^2])/x,x]

[Out]

(Sqrt[c - a^2*c*x^2]*(a*x - Log[x] + 4*Log[1 - a*x]))/(a*Sqrt[1 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

Maple [A]  time = 0.187, size = 59, normalized size = 0.5 \begin{align*} -{\frac{ \left ( -ax+\ln \left ( x \right ) -4\,\ln \left ( ax-1 \right ) \right ) \left ( ax-1 \right ) }{ \left ( ax+1 \right ) ^{2}}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) } \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(1/2)/x,x)

[Out]

-(-c*(a^2*x^2-1))^(1/2)*(-a*x+ln(x)-4*ln(a*x-1))*(a*x-1)/(a*x+1)^2/((a*x-1)/(a*x+1))^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c}}{x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.67815, size = 65, normalized size = 0.57 \begin{align*} \frac{\sqrt{-a^{2} c}{\left (a x + 4 \, \log \left (a x - 1\right ) - \log \left (x\right )\right )}}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(1/2)/x,x, algorithm="fricas")

[Out]

sqrt(-a^2*c)*(a*x + 4*log(a*x - 1) - log(x))/a

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a**2*c*x**2+c)**(1/2)/x,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c}}{x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^(1/2)/x,x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)