3.669 \(\int e^{\coth ^{-1}(a x)} x \sqrt{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=74 \[ \frac{x^2 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{x \sqrt{c-a^2 c x^2}}{2 a \sqrt{1-\frac{1}{a^2 x^2}}} \]

[Out]

(x*Sqrt[c - a^2*c*x^2])/(2*a*Sqrt[1 - 1/(a^2*x^2)]) + (x^2*Sqrt[c - a^2*c*x^2])/(3*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.173718, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {6192, 6193, 43} \[ \frac{x^2 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{x \sqrt{c-a^2 c x^2}}{2 a \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]*x*Sqrt[c - a^2*c*x^2],x]

[Out]

(x*Sqrt[c - a^2*c*x^2])/(2*a*Sqrt[1 - 1/(a^2*x^2)]) + (x^2*Sqrt[c - a^2*c*x^2])/(3*Sqrt[1 - 1/(a^2*x^2)])

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{\coth ^{-1}(a x)} x \sqrt{c-a^2 c x^2} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{\coth ^{-1}(a x)} \sqrt{1-\frac{1}{a^2 x^2}} x^2 \, dx}{\sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2} \int x (1+a x) \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2} \int \left (x+a x^2\right ) \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{x \sqrt{c-a^2 c x^2}}{2 a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{x^2 \sqrt{c-a^2 c x^2}}{3 \sqrt{1-\frac{1}{a^2 x^2}}}\\ \end{align*}

Mathematica [A]  time = 0.0205325, size = 43, normalized size = 0.58 \[ \frac{x (2 a x+3) \sqrt{c-a^2 c x^2}}{6 a \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcCoth[a*x]*x*Sqrt[c - a^2*c*x^2],x]

[Out]

(x*(3 + 2*a*x)*Sqrt[c - a^2*c*x^2])/(6*a*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.042, size = 47, normalized size = 0.6 \begin{align*}{\frac{{x}^{2} \left ( 2\,ax+3 \right ) }{6\,ax+6}\sqrt{-{a}^{2}c{x}^{2}+c}{\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*x*(-a^2*c*x^2+c)^(1/2),x)

[Out]

1/6*x^2*(2*a*x+3)*(-a^2*c*x^2+c)^(1/2)/(a*x+1)/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c} x}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x*(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*x/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.57437, size = 51, normalized size = 0.69 \begin{align*} \frac{{\left (2 \, a x^{3} + 3 \, x^{2}\right )} \sqrt{-a^{2} c}}{6 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x*(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

1/6*(2*a*x^3 + 3*x^2)*sqrt(-a^2*c)/a

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )}}{\sqrt{\frac{a x - 1}{a x + 1}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*x*(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(x*sqrt(-c*(a*x - 1)*(a*x + 1))/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c} x}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x*(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*x/sqrt((a*x - 1)/(a*x + 1)), x)