3.661 \(\int e^{-3 \coth ^{-1}(a x)} (c-a^2 c x^2)^{5/2} \, dx\)

Optimal. Leaf size=95 \[ \frac{(1-a x)^6 \left (c-a^2 c x^2\right )^{5/2}}{6 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}-\frac{2 (1-a x)^5 \left (c-a^2 c x^2\right )^{5/2}}{5 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}} \]

[Out]

(-2*(1 - a*x)^5*(c - a^2*c*x^2)^(5/2))/(5*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5) + ((1 - a*x)^6*(c - a^2*c*x^2)^(5/2
))/(6*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5)

________________________________________________________________________________________

Rubi [A]  time = 0.179096, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {6192, 6193, 43} \[ \frac{(1-a x)^6 \left (c-a^2 c x^2\right )^{5/2}}{6 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}-\frac{2 (1-a x)^5 \left (c-a^2 c x^2\right )^{5/2}}{5 a^6 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(c - a^2*c*x^2)^(5/2)/E^(3*ArcCoth[a*x]),x]

[Out]

(-2*(1 - a*x)^5*(c - a^2*c*x^2)^(5/2))/(5*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5) + ((1 - a*x)^6*(c - a^2*c*x^2)^(5/2
))/(6*a^6*(1 - 1/(a^2*x^2))^(5/2)*x^5)

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^{5/2} \, dx &=\frac{\left (c-a^2 c x^2\right )^{5/2} \int e^{-3 \coth ^{-1}(a x)} \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5 \, dx}{\left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}\\ &=\frac{\left (c-a^2 c x^2\right )^{5/2} \int (-1+a x)^4 (1+a x) \, dx}{a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}\\ &=\frac{\left (c-a^2 c x^2\right )^{5/2} \int \left (2 (-1+a x)^4+(-1+a x)^5\right ) \, dx}{a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}\\ &=-\frac{2 (1-a x)^5 \left (c-a^2 c x^2\right )^{5/2}}{5 a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}+\frac{(1-a x)^6 \left (c-a^2 c x^2\right )^{5/2}}{6 a^6 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}\\ \end{align*}

Mathematica [A]  time = 0.0392302, size = 55, normalized size = 0.58 \[ \frac{c^2 (a x-1)^5 (5 a x+7) \sqrt{c-a^2 c x^2}}{30 a^2 x \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c - a^2*c*x^2)^(5/2)/E^(3*ArcCoth[a*x]),x]

[Out]

(c^2*(-1 + a*x)^5*(7 + 5*a*x)*Sqrt[c - a^2*c*x^2])/(30*a^2*Sqrt[1 - 1/(a^2*x^2)]*x)

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 84, normalized size = 0.9 \begin{align*}{\frac{x \left ( 5\,{x}^{5}{a}^{5}-18\,{x}^{4}{a}^{4}+15\,{x}^{3}{a}^{3}+20\,{a}^{2}{x}^{2}-45\,ax+30 \right ) }{ \left ( 30\,ax+30 \right ) \left ( ax-1 \right ) ^{4}} \left ( -{a}^{2}c{x}^{2}+c \right ) ^{{\frac{5}{2}}} \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*c*x^2+c)^(5/2)*((a*x-1)/(a*x+1))^(3/2),x)

[Out]

1/30*x*(5*a^5*x^5-18*a^4*x^4+15*a^3*x^3+20*a^2*x^2-45*a*x+30)*(-a^2*c*x^2+c)^(5/2)*((a*x-1)/(a*x+1))^(3/2)/(a*
x+1)/(a*x-1)^4

________________________________________________________________________________________

Maxima [A]  time = 1.10204, size = 189, normalized size = 1.99 \begin{align*} \frac{{\left (5 \, a^{7} \sqrt{-c} c^{2} x^{7} - 13 \, a^{6} \sqrt{-c} c^{2} x^{6} - 3 \, a^{5} \sqrt{-c} c^{2} x^{5} + 35 \, a^{4} \sqrt{-c} c^{2} x^{4} - 25 \, a^{3} \sqrt{-c} c^{2} x^{3} - 15 \, a^{2} \sqrt{-c} c^{2} x^{2} - 30 \, \sqrt{-c} c^{2}\right )}{\left (a x - 1\right )}^{2}}{30 \,{\left (a^{3} x^{2} - 2 \, a^{2} x + a\right )}{\left (a x + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(5/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

1/30*(5*a^7*sqrt(-c)*c^2*x^7 - 13*a^6*sqrt(-c)*c^2*x^6 - 3*a^5*sqrt(-c)*c^2*x^5 + 35*a^4*sqrt(-c)*c^2*x^4 - 25
*a^3*sqrt(-c)*c^2*x^3 - 15*a^2*sqrt(-c)*c^2*x^2 - 30*sqrt(-c)*c^2)*(a*x - 1)^2/((a^3*x^2 - 2*a^2*x + a)*(a*x +
 1))

________________________________________________________________________________________

Fricas [A]  time = 1.62129, size = 154, normalized size = 1.62 \begin{align*} \frac{{\left (5 \, a^{5} c^{2} x^{6} - 18 \, a^{4} c^{2} x^{5} + 15 \, a^{3} c^{2} x^{4} + 20 \, a^{2} c^{2} x^{3} - 45 \, a c^{2} x^{2} + 30 \, c^{2} x\right )} \sqrt{-a^{2} c}}{30 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(5/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

1/30*(5*a^5*c^2*x^6 - 18*a^4*c^2*x^5 + 15*a^3*c^2*x^4 + 20*a^2*c^2*x^3 - 45*a*c^2*x^2 + 30*c^2*x)*sqrt(-a^2*c)
/a

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*c*x**2+c)**(5/2)*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (-a^{2} c x^{2} + c\right )}^{\frac{5}{2}} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^(5/2)*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

integrate((-a^2*c*x^2 + c)^(5/2)*((a*x - 1)/(a*x + 1))^(3/2), x)