3.640 \(\int \frac{e^{3 \coth ^{-1}(a x)}}{(c-a^2 c x^2)^{5/2}} \, dx\)

Optimal. Leaf size=185 \[ \frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (1-a x) \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (1-a x)^2 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{6 (1-a x)^3 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \tanh ^{-1}(a x)}{8 \left (c-a^2 c x^2\right )^{5/2}} \]

[Out]

(a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(6*(1 - a*x)^3*(c - a^2*c*x^2)^(5/2)) + (a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(8
*(1 - a*x)^2*(c - a^2*c*x^2)^(5/2)) + (a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(8*(1 - a*x)*(c - a^2*c*x^2)^(5/2)) +
(a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5*ArcTanh[a*x])/(8*(c - a^2*c*x^2)^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.203737, antiderivative size = 185, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {6192, 6193, 44, 207} \[ \frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (1-a x) \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{8 (1-a x)^2 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}{6 (1-a x)^3 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 x^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} \tanh ^{-1}(a x)}{8 \left (c-a^2 c x^2\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcCoth[a*x])/(c - a^2*c*x^2)^(5/2),x]

[Out]

(a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(6*(1 - a*x)^3*(c - a^2*c*x^2)^(5/2)) + (a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(8
*(1 - a*x)^2*(c - a^2*c*x^2)^(5/2)) + (a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5)/(8*(1 - a*x)*(c - a^2*c*x^2)^(5/2)) +
(a^4*(1 - 1/(a^2*x^2))^(5/2)*x^5*ArcTanh[a*x])/(8*(c - a^2*c*x^2)^(5/2))

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{3 \coth ^{-1}(a x)}}{\left (c-a^2 c x^2\right )^{5/2}} \, dx &=\frac{\left (\left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5\right ) \int \frac{e^{3 \coth ^{-1}(a x)}}{\left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5} \, dx}{\left (c-a^2 c x^2\right )^{5/2}}\\ &=\frac{\left (a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5\right ) \int \frac{1}{(-1+a x)^4 (1+a x)} \, dx}{\left (c-a^2 c x^2\right )^{5/2}}\\ &=\frac{\left (a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5\right ) \int \left (\frac{1}{2 (-1+a x)^4}-\frac{1}{4 (-1+a x)^3}+\frac{1}{8 (-1+a x)^2}-\frac{1}{8 \left (-1+a^2 x^2\right )}\right ) \, dx}{\left (c-a^2 c x^2\right )^{5/2}}\\ &=\frac{a^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{6 (1-a x)^3 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{8 (1-a x)^2 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{8 (1-a x) \left (c-a^2 c x^2\right )^{5/2}}-\frac{\left (a^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5\right ) \int \frac{1}{-1+a^2 x^2} \, dx}{8 \left (c-a^2 c x^2\right )^{5/2}}\\ &=\frac{a^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{6 (1-a x)^3 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{8 (1-a x)^2 \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5}{8 (1-a x) \left (c-a^2 c x^2\right )^{5/2}}+\frac{a^4 \left (1-\frac{1}{a^2 x^2}\right )^{5/2} x^5 \tanh ^{-1}(a x)}{8 \left (c-a^2 c x^2\right )^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.0610113, size = 71, normalized size = 0.38 \[ \frac{x \sqrt{1-\frac{1}{a^2 x^2}} \left (-3 a^2 x^2+9 a x+3 (a x-1)^3 \tanh ^{-1}(a x)-10\right )}{24 c^2 (a x-1)^3 \sqrt{c-a^2 c x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcCoth[a*x])/(c - a^2*c*x^2)^(5/2),x]

[Out]

(Sqrt[1 - 1/(a^2*x^2)]*x*(-10 + 9*a*x - 3*a^2*x^2 + 3*(-1 + a*x)^3*ArcTanh[a*x]))/(24*c^2*(-1 + a*x)^3*Sqrt[c
- a^2*c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.175, size = 169, normalized size = 0.9 \begin{align*} -{\frac{3\,{a}^{3}{x}^{3}\ln \left ( ax+1 \right ) -3\,\ln \left ( ax-1 \right ){x}^{3}{a}^{3}-9\,\ln \left ( ax+1 \right ){a}^{2}{x}^{2}+9\,\ln \left ( ax-1 \right ){a}^{2}{x}^{2}-6\,{a}^{2}{x}^{2}+9\,ax\ln \left ( ax+1 \right ) -9\,\ln \left ( ax-1 \right ) xa+18\,ax-3\,\ln \left ( ax+1 \right ) +3\,\ln \left ( ax-1 \right ) -20}{ \left ( 48\,ax-48 \right ) \left ( ax+1 \right ) \left ({a}^{2}{x}^{2}-1 \right ){c}^{3}a}\sqrt{-c \left ({a}^{2}{x}^{2}-1 \right ) } \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)/(-a^2*c*x^2+c)^(5/2),x)

[Out]

-1/48/((a*x-1)/(a*x+1))^(3/2)/(a*x-1)/(a*x+1)*(-c*(a^2*x^2-1))^(1/2)*(3*a^3*x^3*ln(a*x+1)-3*ln(a*x-1)*x^3*a^3-
9*ln(a*x+1)*a^2*x^2+9*ln(a*x-1)*a^2*x^2-6*a^2*x^2+9*a*x*ln(a*x+1)-9*ln(a*x-1)*x*a+18*a*x-3*ln(a*x+1)+3*ln(a*x-
1)-20)/(a^2*x^2-1)/c^3/a

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{5}{2}} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)/(-a^2*c*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((-a^2*c*x^2 + c)^(5/2)*((a*x - 1)/(a*x + 1))^(3/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.90131, size = 290, normalized size = 1.57 \begin{align*} -\frac{3 \,{\left (a^{4} x^{3} - 3 \, a^{3} x^{2} + 3 \, a^{2} x - a\right )} \sqrt{-c} \log \left (\frac{a^{2} c x^{2} - 2 \, \sqrt{-a^{2} c} \sqrt{-c} x + c}{a^{2} x^{2} - 1}\right ) - 2 \,{\left (3 \, a^{2} x^{2} - 9 \, a x + 10\right )} \sqrt{-a^{2} c}}{48 \,{\left (a^{5} c^{3} x^{3} - 3 \, a^{4} c^{3} x^{2} + 3 \, a^{3} c^{3} x - a^{2} c^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)/(-a^2*c*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

-1/48*(3*(a^4*x^3 - 3*a^3*x^2 + 3*a^2*x - a)*sqrt(-c)*log((a^2*c*x^2 - 2*sqrt(-a^2*c)*sqrt(-c)*x + c)/(a^2*x^2
 - 1)) - 2*(3*a^2*x^2 - 9*a*x + 10)*sqrt(-a^2*c))/(a^5*c^3*x^3 - 3*a^4*c^3*x^2 + 3*a^3*c^3*x - a^2*c^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)/(-a**2*c*x**2+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (-a^{2} c x^{2} + c\right )}^{\frac{5}{2}} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)/(-a^2*c*x^2+c)^(5/2),x, algorithm="giac")

[Out]

integrate(1/((-a^2*c*x^2 + c)^(5/2)*((a*x - 1)/(a*x + 1))^(3/2)), x)