3.618 \(\int e^{\coth ^{-1}(a x)} \sqrt{c-a^2 c x^2} \, dx\)

Optimal. Leaf size=68 \[ \frac{x \sqrt{c-a^2 c x^2}}{2 \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{\sqrt{c-a^2 c x^2}}{a \sqrt{1-\frac{1}{a^2 x^2}}} \]

[Out]

Sqrt[c - a^2*c*x^2]/(a*Sqrt[1 - 1/(a^2*x^2)]) + (x*Sqrt[c - a^2*c*x^2])/(2*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.108736, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {6192, 6193} \[ \frac{x \sqrt{c-a^2 c x^2}}{2 \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{\sqrt{c-a^2 c x^2}}{a \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]*Sqrt[c - a^2*c*x^2],x]

[Out]

Sqrt[c - a^2*c*x^2]/(a*Sqrt[1 - 1/(a^2*x^2)]) + (x*Sqrt[c - a^2*c*x^2])/(2*Sqrt[1 - 1/(a^2*x^2)])

Rule 6192

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p), Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
 && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6193

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Dist[c^p/a^(2*p), Int[(u*(-1
 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2))/x^(2*p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&  !
IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]

Rubi steps

\begin{align*} \int e^{\coth ^{-1}(a x)} \sqrt{c-a^2 c x^2} \, dx &=\frac{\sqrt{c-a^2 c x^2} \int e^{\coth ^{-1}(a x)} \sqrt{1-\frac{1}{a^2 x^2}} x \, dx}{\sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2} \int (1+a x) \, dx}{a \sqrt{1-\frac{1}{a^2 x^2}} x}\\ &=\frac{\sqrt{c-a^2 c x^2}}{a \sqrt{1-\frac{1}{a^2 x^2}}}+\frac{x \sqrt{c-a^2 c x^2}}{2 \sqrt{1-\frac{1}{a^2 x^2}}}\\ \end{align*}

Mathematica [A]  time = 0.0192544, size = 41, normalized size = 0.6 \[ \frac{(a x+2) \sqrt{c-a^2 c x^2}}{2 a \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcCoth[a*x]*Sqrt[c - a^2*c*x^2],x]

[Out]

((2 + a*x)*Sqrt[c - a^2*c*x^2])/(2*a*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 44, normalized size = 0.7 \begin{align*}{\frac{x \left ( ax+2 \right ) }{2\,ax+2}\sqrt{-{a}^{2}c{x}^{2}+c}{\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2),x)

[Out]

1/2*x*(a*x+2)*(-a^2*c*x^2+c)^(1/2)/(a*x+1)/((a*x-1)/(a*x+1))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c}}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.55544, size = 46, normalized size = 0.68 \begin{align*} \frac{\sqrt{-a^{2} c}{\left (a x^{2} + 2 \, x\right )}}{2 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(-a^2*c)*(a*x^2 + 2*x)/a

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (a x - 1\right ) \left (a x + 1\right )}}{\sqrt{\frac{a x - 1}{a x + 1}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(-a**2*c*x**2+c)**(1/2),x)

[Out]

Integral(sqrt(-c*(a*x - 1)*(a*x + 1))/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a^{2} c x^{2} + c}}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)/sqrt((a*x - 1)/(a*x + 1)), x)