### 3.606 $$\int e^{-3 \coth ^{-1}(a x)} (c-a^2 c x^2)^4 \, dx$$

Optimal. Leaf size=393 $\frac{1}{9} a^8 c^4 x^9 \left (1-\frac{1}{a x}\right )^{11/2} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{11}{72} a^7 c^4 x^8 \left (1-\frac{1}{a x}\right )^{9/2} \left (\frac{1}{a x}+1\right )^{7/2}+\frac{11}{56} a^6 c^4 x^7 \left (1-\frac{1}{a x}\right )^{7/2} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{11}{48} a^5 c^4 x^6 \left (1-\frac{1}{a x}\right )^{5/2} \left (\frac{1}{a x}+1\right )^{7/2}+\frac{11}{48} a^4 c^4 x^5 \left (1-\frac{1}{a x}\right )^{3/2} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{11}{64} a^3 c^4 x^4 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}+\frac{11}{192} a^2 c^4 x^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}+\frac{55}{384} a c^4 x^2 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}+\frac{55}{128} c^4 x \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}+\frac{55 c^4 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{128 a}$

[Out]

(55*c^4*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/128 + (55*a*c^4*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x^2)/384
+ (11*a^2*c^4*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2)*x^3)/192 - (11*a^3*c^4*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/
2)*x^4)/64 + (11*a^4*c^4*(1 - 1/(a*x))^(3/2)*(1 + 1/(a*x))^(7/2)*x^5)/48 - (11*a^5*c^4*(1 - 1/(a*x))^(5/2)*(1
+ 1/(a*x))^(7/2)*x^6)/48 + (11*a^6*c^4*(1 - 1/(a*x))^(7/2)*(1 + 1/(a*x))^(7/2)*x^7)/56 - (11*a^7*c^4*(1 - 1/(a
*x))^(9/2)*(1 + 1/(a*x))^(7/2)*x^8)/72 + (a^8*c^4*(1 - 1/(a*x))^(11/2)*(1 + 1/(a*x))^(7/2)*x^9)/9 + (55*c^4*Ar
cTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/(128*a)

________________________________________________________________________________________

Rubi [A]  time = 0.337411, antiderivative size = 393, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 5, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.227, Rules used = {6191, 6195, 94, 92, 208} $\frac{1}{9} a^8 c^4 x^9 \left (1-\frac{1}{a x}\right )^{11/2} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{11}{72} a^7 c^4 x^8 \left (1-\frac{1}{a x}\right )^{9/2} \left (\frac{1}{a x}+1\right )^{7/2}+\frac{11}{56} a^6 c^4 x^7 \left (1-\frac{1}{a x}\right )^{7/2} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{11}{48} a^5 c^4 x^6 \left (1-\frac{1}{a x}\right )^{5/2} \left (\frac{1}{a x}+1\right )^{7/2}+\frac{11}{48} a^4 c^4 x^5 \left (1-\frac{1}{a x}\right )^{3/2} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{11}{64} a^3 c^4 x^4 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}+\frac{11}{192} a^2 c^4 x^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}+\frac{55}{384} a c^4 x^2 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}+\frac{55}{128} c^4 x \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}+\frac{55 c^4 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{128 a}$

Antiderivative was successfully veriﬁed.

[In]

Int[(c - a^2*c*x^2)^4/E^(3*ArcCoth[a*x]),x]

[Out]

(55*c^4*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/128 + (55*a*c^4*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x^2)/384
+ (11*a^2*c^4*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2)*x^3)/192 - (11*a^3*c^4*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/
2)*x^4)/64 + (11*a^4*c^4*(1 - 1/(a*x))^(3/2)*(1 + 1/(a*x))^(7/2)*x^5)/48 - (11*a^5*c^4*(1 - 1/(a*x))^(5/2)*(1
+ 1/(a*x))^(7/2)*x^6)/48 + (11*a^6*c^4*(1 - 1/(a*x))^(7/2)*(1 + 1/(a*x))^(7/2)*x^7)/56 - (11*a^7*c^4*(1 - 1/(a
*x))^(9/2)*(1 + 1/(a*x))^(7/2)*x^8)/72 + (a^8*c^4*(1 - 1/(a*x))^(11/2)*(1 + 1/(a*x))^(7/2)*x^9)/9 + (55*c^4*Ar
cTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]])/(128*a)

Rule 6191

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^(2*p)*(1 -
1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &
& IntegerQ[p]

Rule 6195

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^p, Subst[Int[((
1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2
*d, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2] && IntegerQ[m]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{-3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^4 \, dx &=\left (a^8 c^4\right ) \int e^{-3 \coth ^{-1}(a x)} \left (1-\frac{1}{a^2 x^2}\right )^4 x^8 \, dx\\ &=-\left (\left (a^8 c^4\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{11/2} \left (1+\frac{x}{a}\right )^{5/2}}{x^{10}} \, dx,x,\frac{1}{x}\right )\right )\\ &=\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9+\frac{1}{9} \left (11 a^7 c^4\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{9/2} \left (1+\frac{x}{a}\right )^{5/2}}{x^9} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9-\frac{1}{8} \left (11 a^6 c^4\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{7/2} \left (1+\frac{x}{a}\right )^{5/2}}{x^8} \, dx,x,\frac{1}{x}\right )\\ &=\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9+\frac{1}{8} \left (11 a^5 c^4\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{5/2} \left (1+\frac{x}{a}\right )^{5/2}}{x^7} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9-\frac{1}{48} \left (55 a^4 c^4\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{3/2} \left (1+\frac{x}{a}\right )^{5/2}}{x^6} \, dx,x,\frac{1}{x}\right )\\ &=\frac{11}{48} a^4 c^4 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{7/2} x^5-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9+\frac{1}{16} \left (11 a^3 c^4\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{5/2}}{x^5} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{11}{64} a^3 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{11}{48} a^4 c^4 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{7/2} x^5-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9-\frac{1}{64} \left (11 a^2 c^4\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{5/2}}{x^4 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{11}{192} a^2 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{11}{64} a^3 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{11}{48} a^4 c^4 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{7/2} x^5-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9-\frac{1}{192} \left (55 a c^4\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{3/2}}{x^3 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{55}{384} a c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2+\frac{11}{192} a^2 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{11}{64} a^3 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{11}{48} a^4 c^4 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{7/2} x^5-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9-\frac{1}{128} \left (55 c^4\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x}{a}}}{x^2 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{55}{128} c^4 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x+\frac{55}{384} a c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2+\frac{11}{192} a^2 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{11}{64} a^3 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{11}{48} a^4 c^4 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{7/2} x^5-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9-\frac{\left (55 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{128 a}\\ &=\frac{55}{128} c^4 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x+\frac{55}{384} a c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2+\frac{11}{192} a^2 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{11}{64} a^3 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{11}{48} a^4 c^4 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{7/2} x^5-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9+\frac{\left (55 c^4\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a}-\frac{x^2}{a}} \, dx,x,\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{128 a^2}\\ &=\frac{55}{128} c^4 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x+\frac{55}{384} a c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2+\frac{11}{192} a^2 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{11}{64} a^3 c^4 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{11}{48} a^4 c^4 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{7/2} x^5-\frac{11}{48} a^5 c^4 \left (1-\frac{1}{a x}\right )^{5/2} \left (1+\frac{1}{a x}\right )^{7/2} x^6+\frac{11}{56} a^6 c^4 \left (1-\frac{1}{a x}\right )^{7/2} \left (1+\frac{1}{a x}\right )^{7/2} x^7-\frac{11}{72} a^7 c^4 \left (1-\frac{1}{a x}\right )^{9/2} \left (1+\frac{1}{a x}\right )^{7/2} x^8+\frac{1}{9} a^8 c^4 \left (1-\frac{1}{a x}\right )^{11/2} \left (1+\frac{1}{a x}\right )^{7/2} x^9+\frac{55 c^4 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{128 a}\\ \end{align*}

Mathematica [A]  time = 0.18618, size = 111, normalized size = 0.28 $\frac{c^4 \left (a x \sqrt{1-\frac{1}{a^2 x^2}} \left (896 a^8 x^8-3024 a^7 x^7+1024 a^6 x^6+7224 a^5 x^5-8448 a^4 x^4-3066 a^3 x^3+10240 a^2 x^2-4599 a x-3712\right )+3465 \log \left (x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )\right )}{8064 a}$

Warning: Unable to verify antiderivative.

[In]

Integrate[(c - a^2*c*x^2)^4/E^(3*ArcCoth[a*x]),x]

[Out]

(c^4*(a*Sqrt[1 - 1/(a^2*x^2)]*x*(-3712 - 4599*a*x + 10240*a^2*x^2 - 3066*a^3*x^3 - 8448*a^4*x^4 + 7224*a^5*x^5
+ 1024*a^6*x^6 - 3024*a^7*x^7 + 896*a^8*x^8) + 3465*Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/(8064*a)

________________________________________________________________________________________

Maple [A]  time = 0.15, size = 288, normalized size = 0.7 \begin{align*}{\frac{ \left ( ax+1 \right ) ^{2}{c}^{4}}{8064\, \left ( ax-1 \right ) a} \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{3}{2}}} \left ( 896\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{6}{a}^{6}-3024\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{5}{a}^{5}+1920\,\sqrt{{a}^{2}} \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}{x}^{4}{a}^{4}+4200\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{3}{a}^{3}-6528\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{2}{a}^{2}+1134\,\sqrt{{a}^{2}} \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}xa-4352\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}-3465\,\sqrt{{a}^{2}}\sqrt{{a}^{2}{x}^{2}-1}xa+8064\, \left ( \left ( ax-1 \right ) \left ( ax+1 \right ) \right ) ^{3/2}\sqrt{{a}^{2}}+3465\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}{x}^{2}-1}\sqrt{{a}^{2}}}{\sqrt{{a}^{2}}}} \right ) a \right ){\frac{1}{\sqrt{{a}^{2}}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*c*x^2+c)^4*((a*x-1)/(a*x+1))^(3/2),x)

[Out]

1/8064*((a*x-1)/(a*x+1))^(3/2)*(a*x+1)^2*c^4/a*(896*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)*x^6*a^6-3024*(a^2*x^2-1)^(3/
2)*(a^2)^(1/2)*x^5*a^5+1920*(a^2)^(1/2)*(a^2*x^2-1)^(3/2)*x^4*a^4+4200*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)*x^3*a^3-6
528*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)*x^2*a^2+1134*(a^2)^(1/2)*(a^2*x^2-1)^(3/2)*x*a-4352*(a^2*x^2-1)^(3/2)*(a^2)^
(1/2)-3465*(a^2)^(1/2)*(a^2*x^2-1)^(1/2)*x*a+8064*((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)+3465*ln((a^2*x+(a^2*x^2-
1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*a)/(a*x-1)/((a*x-1)*(a*x+1))^(1/2)/(a^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.06843, size = 560, normalized size = 1.42 \begin{align*} \frac{1}{8064} \,{\left (\frac{3465 \, c^{4} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{3465 \, c^{4} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2}} - \frac{2 \,{\left (3465 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{17}{2}} - 30030 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{15}{2}} + 115038 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{13}{2}} + 334602 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{11}{2}} - 360448 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{9}{2}} + 255222 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{7}{2}} - 115038 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{2}} + 30030 \, c^{4} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}} - 3465 \, c^{4} \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{\frac{9 \,{\left (a x - 1\right )} a^{2}}{a x + 1} - \frac{36 \,{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} + \frac{84 \,{\left (a x - 1\right )}^{3} a^{2}}{{\left (a x + 1\right )}^{3}} - \frac{126 \,{\left (a x - 1\right )}^{4} a^{2}}{{\left (a x + 1\right )}^{4}} + \frac{126 \,{\left (a x - 1\right )}^{5} a^{2}}{{\left (a x + 1\right )}^{5}} - \frac{84 \,{\left (a x - 1\right )}^{6} a^{2}}{{\left (a x + 1\right )}^{6}} + \frac{36 \,{\left (a x - 1\right )}^{7} a^{2}}{{\left (a x + 1\right )}^{7}} - \frac{9 \,{\left (a x - 1\right )}^{8} a^{2}}{{\left (a x + 1\right )}^{8}} + \frac{{\left (a x - 1\right )}^{9} a^{2}}{{\left (a x + 1\right )}^{9}} - a^{2}}\right )} a \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^4*((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

1/8064*(3465*c^4*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 3465*c^4*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2 - 2*
(3465*c^4*((a*x - 1)/(a*x + 1))^(17/2) - 30030*c^4*((a*x - 1)/(a*x + 1))^(15/2) + 115038*c^4*((a*x - 1)/(a*x +
1))^(13/2) + 334602*c^4*((a*x - 1)/(a*x + 1))^(11/2) - 360448*c^4*((a*x - 1)/(a*x + 1))^(9/2) + 255222*c^4*((
a*x - 1)/(a*x + 1))^(7/2) - 115038*c^4*((a*x - 1)/(a*x + 1))^(5/2) + 30030*c^4*((a*x - 1)/(a*x + 1))^(3/2) - 3
465*c^4*sqrt((a*x - 1)/(a*x + 1)))/(9*(a*x - 1)*a^2/(a*x + 1) - 36*(a*x - 1)^2*a^2/(a*x + 1)^2 + 84*(a*x - 1)^
3*a^2/(a*x + 1)^3 - 126*(a*x - 1)^4*a^2/(a*x + 1)^4 + 126*(a*x - 1)^5*a^2/(a*x + 1)^5 - 84*(a*x - 1)^6*a^2/(a*
x + 1)^6 + 36*(a*x - 1)^7*a^2/(a*x + 1)^7 - 9*(a*x - 1)^8*a^2/(a*x + 1)^8 + (a*x - 1)^9*a^2/(a*x + 1)^9 - a^2)
)*a

________________________________________________________________________________________

Fricas [A]  time = 1.68322, size = 416, normalized size = 1.06 \begin{align*} \frac{3465 \, c^{4} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 3465 \, c^{4} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right ) +{\left (896 \, a^{9} c^{4} x^{9} - 2128 \, a^{8} c^{4} x^{8} - 2000 \, a^{7} c^{4} x^{7} + 8248 \, a^{6} c^{4} x^{6} - 1224 \, a^{5} c^{4} x^{5} - 11514 \, a^{4} c^{4} x^{4} + 7174 \, a^{3} c^{4} x^{3} + 5641 \, a^{2} c^{4} x^{2} - 8311 \, a c^{4} x - 3712 \, c^{4}\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{8064 \, a} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^4*((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

1/8064*(3465*c^4*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 3465*c^4*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (896*a^9*c
^4*x^9 - 2128*a^8*c^4*x^8 - 2000*a^7*c^4*x^7 + 8248*a^6*c^4*x^6 - 1224*a^5*c^4*x^5 - 11514*a^4*c^4*x^4 + 7174*
a^3*c^4*x^3 + 5641*a^2*c^4*x^2 - 8311*a*c^4*x - 3712*c^4)*sqrt((a*x - 1)/(a*x + 1)))/a

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*c*x**2+c)**4*((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.1457, size = 267, normalized size = 0.68 \begin{align*} -\frac{55 \, c^{4} \log \left ({\left | -x{\left | a \right |} + \sqrt{a^{2} x^{2} - 1} \right |}\right ) \mathrm{sgn}\left (a x + 1\right )}{128 \,{\left | a \right |}} - \frac{1}{8064} \, \sqrt{a^{2} x^{2} - 1}{\left (\frac{3712 \, c^{4} \mathrm{sgn}\left (a x + 1\right )}{a} +{\left (4599 \, c^{4} \mathrm{sgn}\left (a x + 1\right ) - 2 \,{\left (5120 \, a c^{4} \mathrm{sgn}\left (a x + 1\right ) -{\left (1533 \, a^{2} c^{4} \mathrm{sgn}\left (a x + 1\right ) + 4 \,{\left (1056 \, a^{3} c^{4} \mathrm{sgn}\left (a x + 1\right ) -{\left (903 \, a^{4} c^{4} \mathrm{sgn}\left (a x + 1\right ) + 2 \,{\left (64 \, a^{5} c^{4} \mathrm{sgn}\left (a x + 1\right ) + 7 \,{\left (8 \, a^{7} c^{4} x \mathrm{sgn}\left (a x + 1\right ) - 27 \, a^{6} c^{4} \mathrm{sgn}\left (a x + 1\right )\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} x\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*c*x^2+c)^4*((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

-55/128*c^4*log(abs(-x*abs(a) + sqrt(a^2*x^2 - 1)))*sgn(a*x + 1)/abs(a) - 1/8064*sqrt(a^2*x^2 - 1)*(3712*c^4*s
gn(a*x + 1)/a + (4599*c^4*sgn(a*x + 1) - 2*(5120*a*c^4*sgn(a*x + 1) - (1533*a^2*c^4*sgn(a*x + 1) + 4*(1056*a^3
*c^4*sgn(a*x + 1) - (903*a^4*c^4*sgn(a*x + 1) + 2*(64*a^5*c^4*sgn(a*x + 1) + 7*(8*a^7*c^4*x*sgn(a*x + 1) - 27*
a^6*c^4*sgn(a*x + 1))*x)*x)*x)*x)*x)*x)*x)