### 3.60 $$\int e^{\frac{1}{2} \coth ^{-1}(a x)} x^3 \, dx$$

Optimal. Leaf size=216 $\frac{29 x^2 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}}{96 a^2}+\frac{83 x \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}}{192 a^3}+\frac{11 \tan ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{11 \tanh ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{1}{4} x^4 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}+\frac{7 x^3 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}}{24 a}$

[Out]

(83*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x)/(192*a^3) + (29*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^2)/(9
6*a^2) + (7*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^3)/(24*a) + ((1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^4
)/4 + (11*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(64*a^4) + (11*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(
a*x))^(1/4)])/(64*a^4)

________________________________________________________________________________________

Rubi [A]  time = 0.119058, antiderivative size = 216, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 14, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.571, Rules used = {6171, 99, 151, 12, 93, 212, 206, 203} $\frac{29 x^2 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}}{96 a^2}+\frac{83 x \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}}{192 a^3}+\frac{11 \tan ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{11 \tanh ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{1}{4} x^4 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}+\frac{7 x^3 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{\frac{1}{a x}+1}}{24 a}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(ArcCoth[a*x]/2)*x^3,x]

[Out]

(83*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x)/(192*a^3) + (29*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^2)/(9
6*a^2) + (7*(1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^3)/(24*a) + ((1 - 1/(a*x))^(3/4)*(1 + 1/(a*x))^(1/4)*x^4
)/4 + (11*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(64*a^4) + (11*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(
a*x))^(1/4)])/(64*a^4)

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
!GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int e^{\frac{1}{2} \coth ^{-1}(a x)} x^3 \, dx &=-\operatorname{Subst}\left (\int \frac{\sqrt [4]{1+\frac{x}{a}}}{x^5 \sqrt [4]{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4-\frac{1}{4} \operatorname{Subst}\left (\int \frac{\frac{7}{2 a}+\frac{3 x}{a^2}}{x^4 \sqrt [4]{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{7 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^3}{24 a}+\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4+\frac{1}{12} \operatorname{Subst}\left (\int \frac{-\frac{29}{4 a^2}-\frac{7 x}{a^3}}{x^3 \sqrt [4]{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{29 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^2}{96 a^2}+\frac{7 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^3}{24 a}+\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4-\frac{1}{24} \operatorname{Subst}\left (\int \frac{\frac{83}{8 a^3}+\frac{29 x}{4 a^4}}{x^2 \sqrt [4]{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{83 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x}{192 a^3}+\frac{29 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^2}{96 a^2}+\frac{7 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^3}{24 a}+\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4+\frac{1}{24} \operatorname{Subst}\left (\int -\frac{33}{16 a^4 x \sqrt [4]{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{83 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x}{192 a^3}+\frac{29 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^2}{96 a^2}+\frac{7 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^3}{24 a}+\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4-\frac{11 \operatorname{Subst}\left (\int \frac{1}{x \sqrt [4]{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{3/4}} \, dx,x,\frac{1}{x}\right )}{128 a^4}\\ &=\frac{83 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x}{192 a^3}+\frac{29 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^2}{96 a^2}+\frac{7 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^3}{24 a}+\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4-\frac{11 \operatorname{Subst}\left (\int \frac{1}{-1+x^4} \, dx,x,\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{32 a^4}\\ &=\frac{83 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x}{192 a^3}+\frac{29 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^2}{96 a^2}+\frac{7 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^3}{24 a}+\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4+\frac{11 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{11 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}\\ &=\frac{83 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x}{192 a^3}+\frac{29 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^2}{96 a^2}+\frac{7 \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^3}{24 a}+\frac{1}{4} \left (1-\frac{1}{a x}\right )^{3/4} \sqrt [4]{1+\frac{1}{a x}} x^4+\frac{11 \tan ^{-1}\left (\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{11 \tanh ^{-1}\left (\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}\\ \end{align*}

Mathematica [A]  time = 5.17397, size = 149, normalized size = 0.69 $\frac{\frac{980 e^{\frac{1}{2} \coth ^{-1}(a x)}}{e^{2 \coth ^{-1}(a x)}-1}+\frac{2512 e^{\frac{1}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^2}+\frac{3200 e^{\frac{1}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^3}+\frac{1536 e^{\frac{1}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^4}-33 \log \left (1-e^{\frac{1}{2} \coth ^{-1}(a x)}\right )+33 \log \left (e^{\frac{1}{2} \coth ^{-1}(a x)}+1\right )+66 \tan ^{-1}\left (e^{\frac{1}{2} \coth ^{-1}(a x)}\right )}{384 a^4}$

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcCoth[a*x]/2)*x^3,x]

[Out]

((1536*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x]))^4 + (3200*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x]))^3
+ (2512*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x]))^2 + (980*E^(ArcCoth[a*x]/2))/(-1 + E^(2*ArcCoth[a*x]))
+ 66*ArcTan[E^(ArcCoth[a*x]/2)] - 33*Log[1 - E^(ArcCoth[a*x]/2)] + 33*Log[1 + E^(ArcCoth[a*x]/2)])/(384*a^4)

________________________________________________________________________________________

Maple [F]  time = 0.132, size = 0, normalized size = 0. \begin{align*} \int{{x}^{3}{\frac{1}{\sqrt [4]{{\frac{ax-1}{ax+1}}}}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/4)*x^3,x)

[Out]

int(1/((a*x-1)/(a*x+1))^(1/4)*x^3,x)

________________________________________________________________________________________

Maxima [A]  time = 1.52343, size = 302, normalized size = 1.4 \begin{align*} \frac{1}{384} \, a{\left (\frac{4 \,{\left (33 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{15}{4}} - 279 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{11}{4}} + 107 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{7}{4}} - 245 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{4}}\right )}}{\frac{4 \,{\left (a x - 1\right )} a^{5}}{a x + 1} - \frac{6 \,{\left (a x - 1\right )}^{2} a^{5}}{{\left (a x + 1\right )}^{2}} + \frac{4 \,{\left (a x - 1\right )}^{3} a^{5}}{{\left (a x + 1\right )}^{3}} - \frac{{\left (a x - 1\right )}^{4} a^{5}}{{\left (a x + 1\right )}^{4}} - a^{5}} - \frac{66 \, \arctan \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}{a^{5}} + \frac{33 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 1\right )}{a^{5}} - \frac{33 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} - 1\right )}{a^{5}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/4)*x^3,x, algorithm="maxima")

[Out]

1/384*a*(4*(33*((a*x - 1)/(a*x + 1))^(15/4) - 279*((a*x - 1)/(a*x + 1))^(11/4) + 107*((a*x - 1)/(a*x + 1))^(7/
4) - 245*((a*x - 1)/(a*x + 1))^(3/4))/(4*(a*x - 1)*a^5/(a*x + 1) - 6*(a*x - 1)^2*a^5/(a*x + 1)^2 + 4*(a*x - 1)
^3*a^5/(a*x + 1)^3 - (a*x - 1)^4*a^5/(a*x + 1)^4 - a^5) - 66*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 + 33*log(
((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 - 33*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^5)

________________________________________________________________________________________

Fricas [A]  time = 1.68203, size = 302, normalized size = 1.4 \begin{align*} \frac{2 \,{\left (48 \, a^{4} x^{4} + 104 \, a^{3} x^{3} + 114 \, a^{2} x^{2} + 141 \, a x + 83\right )} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{4}} - 66 \, \arctan \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right ) + 33 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 1\right ) - 33 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} - 1\right )}{384 \, a^{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/4)*x^3,x, algorithm="fricas")

[Out]

1/384*(2*(48*a^4*x^4 + 104*a^3*x^3 + 114*a^2*x^2 + 141*a*x + 83)*((a*x - 1)/(a*x + 1))^(3/4) - 66*arctan(((a*x
- 1)/(a*x + 1))^(1/4)) + 33*log(((a*x - 1)/(a*x + 1))^(1/4) + 1) - 33*log(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a
^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt [4]{\frac{a x - 1}{a x + 1}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/4)*x**3,x)

[Out]

Integral(x**3/((a*x - 1)/(a*x + 1))**(1/4), x)

________________________________________________________________________________________

Giac [A]  time = 1.21551, size = 274, normalized size = 1.27 \begin{align*} -\frac{1}{384} \, a{\left (\frac{66 \, \arctan \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}{a^{5}} - \frac{33 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 1\right )}{a^{5}} + \frac{33 \, \log \left ({\left | \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} - 1 \right |}\right )}{a^{5}} + \frac{4 \,{\left (\frac{107 \,{\left (a x - 1\right )} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{4}}}{a x + 1} - \frac{279 \,{\left (a x - 1\right )}^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{4}}}{{\left (a x + 1\right )}^{2}} + \frac{33 \,{\left (a x - 1\right )}^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{4}}}{{\left (a x + 1\right )}^{3}} - 245 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{4}}\right )}}{a^{5}{\left (\frac{a x - 1}{a x + 1} - 1\right )}^{4}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/4)*x^3,x, algorithm="giac")

[Out]

-1/384*a*(66*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 - 33*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 + 33*log(ab
s(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^5 + 4*(107*(a*x - 1)*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1) - 279*(a*x -
1)^2*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^2 + 33*(a*x - 1)^3*((a*x - 1)/(a*x + 1))^(3/4)/(a*x + 1)^3 - 245*((
a*x - 1)/(a*x + 1))^(3/4))/(a^5*((a*x - 1)/(a*x + 1) - 1)^4))