### 3.575 $$\int e^{3 \coth ^{-1}(a x)} (c-a^2 c x^2)^2 \, dx$$

Optimal. Leaf size=233 $\frac{1}{5} a^4 c^2 x^5 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{9/2}-\frac{1}{20} a^3 c^2 x^4 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{7}{60} a^2 c^2 x^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}-\frac{7}{24} a c^2 x^2 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}-\frac{7}{8} c^2 x \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}-\frac{7 c^2 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{8 a}$

[Out]

(-7*c^2*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/8 - (7*a*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x^2)/24 - (7
*a^2*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2)*x^3)/60 - (a^3*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/2)*x^4)/2
0 + (a^4*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(9/2)*x^5)/5 - (7*c^2*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]
])/(8*a)

________________________________________________________________________________________

Rubi [A]  time = 0.212644, antiderivative size = 233, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.227, Rules used = {6191, 6195, 94, 92, 208} $\frac{1}{5} a^4 c^2 x^5 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{9/2}-\frac{1}{20} a^3 c^2 x^4 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{7}{60} a^2 c^2 x^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}-\frac{7}{24} a c^2 x^2 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}-\frac{7}{8} c^2 x \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}-\frac{7 c^2 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{8 a}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2)^2,x]

[Out]

(-7*c^2*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/8 - (7*a*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x^2)/24 - (7
*a^2*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2)*x^3)/60 - (a^3*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/2)*x^4)/2
0 + (a^4*c^2*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(9/2)*x^5)/5 - (7*c^2*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]
])/(8*a)

Rule 6191

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^(2*p)*(1 -
1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &
& IntegerQ[p]

Rule 6195

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^p, Subst[Int[((
1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2
*d, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2] && IntegerQ[m]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^2 \, dx &=\left (a^4 c^2\right ) \int e^{3 \coth ^{-1}(a x)} \left (1-\frac{1}{a^2 x^2}\right )^2 x^4 \, dx\\ &=-\left (\left (a^4 c^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{7/2}}{x^6} \, dx,x,\frac{1}{x}\right )\right )\\ &=\frac{1}{5} a^4 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{5} \left (a^3 c^2\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{7/2}}{x^5 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{1}{20} a^3 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{1}{5} a^4 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{20} \left (7 a^2 c^2\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{5/2}}{x^4 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{7}{60} a^2 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{1}{20} a^3 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{1}{5} a^4 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{12} \left (7 a c^2\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{3/2}}{x^3 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{7}{24} a c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{7}{60} a^2 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{1}{20} a^3 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{1}{5} a^4 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{8} \left (7 c^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x}{a}}}{x^2 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{7}{8} c^2 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x-\frac{7}{24} a c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{7}{60} a^2 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{1}{20} a^3 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{1}{5} a^4 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{\left (7 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{8 a}\\ &=-\frac{7}{8} c^2 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x-\frac{7}{24} a c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{7}{60} a^2 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{1}{20} a^3 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{1}{5} a^4 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5-\frac{\left (7 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a}-\frac{x^2}{a}} \, dx,x,\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{8 a^2}\\ &=-\frac{7}{8} c^2 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x-\frac{7}{24} a c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{7}{60} a^2 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{1}{20} a^3 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4+\frac{1}{5} a^4 c^2 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5-\frac{7 c^2 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{8 a}\\ \end{align*}

Mathematica [A]  time = 0.102832, size = 79, normalized size = 0.34 $\frac{c^2 \left (a x \sqrt{1-\frac{1}{a^2 x^2}} \left (24 a^4 x^4+90 a^3 x^3+112 a^2 x^2+15 a x-136\right )-105 \log \left (x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )\right )}{120 a}$

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2)^2,x]

[Out]

(c^2*(a*Sqrt[1 - 1/(a^2*x^2)]*x*(-136 + 15*a*x + 112*a^2*x^2 + 90*a^3*x^3 + 24*a^4*x^4) - 105*Log[(1 + Sqrt[1
- 1/(a^2*x^2)])*x]))/(120*a)

________________________________________________________________________________________

Maple [A]  time = 0.184, size = 192, normalized size = 0.8 \begin{align*}{\frac{ \left ( ax-1 \right ) ^{2}{c}^{2}}{120\,a \left ( ax+1 \right ) } \left ( 24\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{2}{a}^{2}+90\,\sqrt{{a}^{2}} \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}xa+16\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}+105\,\sqrt{{a}^{2}}\sqrt{{a}^{2}{x}^{2}-1}xa+120\, \left ( \left ( ax-1 \right ) \left ( ax+1 \right ) \right ) ^{3/2}\sqrt{{a}^{2}}-105\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}{x}^{2}-1}\sqrt{{a}^{2}}}{\sqrt{{a}^{2}}}} \right ) a \right ) \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}}{\frac{1}{\sqrt{{a}^{2}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^2,x)

[Out]

1/120*(a*x-1)^2*c^2/a*(24*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)*x^2*a^2+90*(a^2)^(1/2)*(a^2*x^2-1)^(3/2)*x*a+16*(a^2*x
^2-1)^(3/2)*(a^2)^(1/2)+105*(a^2)^(1/2)*(a^2*x^2-1)^(1/2)*x*a+120*((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)-105*ln((
a^2*x+(a^2*x^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*a)/((a*x-1)/(a*x+1))^(3/2)/(a*x+1)/((a*x-1)*(a*x+1))^(1/2)/(
a^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.08232, size = 350, normalized size = 1.5 \begin{align*} -\frac{1}{120} \, a{\left (\frac{105 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{105 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2}} - \frac{2 \,{\left (105 \, c^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{9}{2}} - 490 \, c^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{7}{2}} + 896 \, c^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{2}} - 790 \, c^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}} - 105 \, c^{2} \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{\frac{5 \,{\left (a x - 1\right )} a^{2}}{a x + 1} - \frac{10 \,{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} + \frac{10 \,{\left (a x - 1\right )}^{3} a^{2}}{{\left (a x + 1\right )}^{3}} - \frac{5 \,{\left (a x - 1\right )}^{4} a^{2}}{{\left (a x + 1\right )}^{4}} + \frac{{\left (a x - 1\right )}^{5} a^{2}}{{\left (a x + 1\right )}^{5}} - a^{2}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^2,x, algorithm="maxima")

[Out]

-1/120*a*(105*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 105*c^2*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2 - 2*
(105*c^2*((a*x - 1)/(a*x + 1))^(9/2) - 490*c^2*((a*x - 1)/(a*x + 1))^(7/2) + 896*c^2*((a*x - 1)/(a*x + 1))^(5/
2) - 790*c^2*((a*x - 1)/(a*x + 1))^(3/2) - 105*c^2*sqrt((a*x - 1)/(a*x + 1)))/(5*(a*x - 1)*a^2/(a*x + 1) - 10*
(a*x - 1)^2*a^2/(a*x + 1)^2 + 10*(a*x - 1)^3*a^2/(a*x + 1)^3 - 5*(a*x - 1)^4*a^2/(a*x + 1)^4 + (a*x - 1)^5*a^2
/(a*x + 1)^5 - a^2))

________________________________________________________________________________________

Fricas [A]  time = 1.67084, size = 301, normalized size = 1.29 \begin{align*} -\frac{105 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 105 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right ) -{\left (24 \, a^{5} c^{2} x^{5} + 114 \, a^{4} c^{2} x^{4} + 202 \, a^{3} c^{2} x^{3} + 127 \, a^{2} c^{2} x^{2} - 121 \, a c^{2} x - 136 \, c^{2}\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{120 \, a} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^2,x, algorithm="fricas")

[Out]

-1/120*(105*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 105*c^2*log(sqrt((a*x - 1)/(a*x + 1)) - 1) - (24*a^5*c^2*
x^5 + 114*a^4*c^2*x^4 + 202*a^3*c^2*x^3 + 127*a^2*c^2*x^2 - 121*a*c^2*x - 136*c^2)*sqrt((a*x - 1)/(a*x + 1)))/
a

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} c^{2} \left (\int - \frac{2 a^{2} x^{2}}{\frac{a x \sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1} - \frac{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1}}\, dx + \int \frac{a^{4} x^{4}}{\frac{a x \sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1} - \frac{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1}}\, dx + \int \frac{1}{\frac{a x \sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1} - \frac{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1}}\, dx\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a**2*c*x**2+c)**2,x)

[Out]

c**2*(Integral(-2*a**2*x**2/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a*x/(a*x + 1) - 1/(a*x + 1
))/(a*x + 1)), x) + Integral(a**4*x**4/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a*x/(a*x + 1) -
1/(a*x + 1))/(a*x + 1)), x) + Integral(1/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a*x/(a*x + 1
) - 1/(a*x + 1))/(a*x + 1)), x))

________________________________________________________________________________________

Giac [A]  time = 1.18678, size = 316, normalized size = 1.36 \begin{align*} -\frac{1}{120} \, a{\left (\frac{105 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{105 \, c^{2} \log \left ({\left | \sqrt{\frac{a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2}} + \frac{2 \,{\left (\frac{790 \,{\left (a x - 1\right )} c^{2} \sqrt{\frac{a x - 1}{a x + 1}}}{a x + 1} - \frac{896 \,{\left (a x - 1\right )}^{2} c^{2} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{2}} + \frac{490 \,{\left (a x - 1\right )}^{3} c^{2} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{3}} - \frac{105 \,{\left (a x - 1\right )}^{4} c^{2} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{4}} + 105 \, c^{2} \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{a^{2}{\left (\frac{a x - 1}{a x + 1} - 1\right )}^{5}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^2,x, algorithm="giac")

[Out]

-1/120*a*(105*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 105*c^2*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^2
+ 2*(790*(a*x - 1)*c^2*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1) - 896*(a*x - 1)^2*c^2*sqrt((a*x - 1)/(a*x + 1))/(a
*x + 1)^2 + 490*(a*x - 1)^3*c^2*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1)^3 - 105*(a*x - 1)^4*c^2*sqrt((a*x - 1)/(a*
x + 1))/(a*x + 1)^4 + 105*c^2*sqrt((a*x - 1)/(a*x + 1)))/(a^2*((a*x - 1)/(a*x + 1) - 1)^5))