### 3.574 $$\int e^{3 \coth ^{-1}(a x)} (c-a^2 c x^2)^3 \, dx$$

Optimal. Leaf size=313 $-\frac{1}{7} a^6 c^3 x^7 \left (1-\frac{1}{a x}\right )^{3/2} \left (\frac{1}{a x}+1\right )^{11/2}+\frac{1}{14} a^5 c^3 x^6 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{11/2}-\frac{1}{70} a^4 c^3 x^5 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{9/2}-\frac{9}{280} a^3 c^3 x^4 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{3}{40} a^2 c^3 x^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}-\frac{3}{16} a c^3 x^2 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}-\frac{9}{16} c^3 x \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}-\frac{9 c^3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{16 a}$

[Out]

(-9*c^3*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/16 - (3*a*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x^2)/16 - (
3*a^2*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2)*x^3)/40 - (9*a^3*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/2)*x^4
)/280 - (a^4*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(9/2)*x^5)/70 + (a^5*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(11/
2)*x^6)/14 - (a^6*c^3*(1 - 1/(a*x))^(3/2)*(1 + 1/(a*x))^(11/2)*x^7)/7 - (9*c^3*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[
1 + 1/(a*x)]])/(16*a)

________________________________________________________________________________________

Rubi [A]  time = 0.253584, antiderivative size = 313, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 5, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.227, Rules used = {6191, 6195, 94, 92, 208} $-\frac{1}{7} a^6 c^3 x^7 \left (1-\frac{1}{a x}\right )^{3/2} \left (\frac{1}{a x}+1\right )^{11/2}+\frac{1}{14} a^5 c^3 x^6 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{11/2}-\frac{1}{70} a^4 c^3 x^5 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{9/2}-\frac{9}{280} a^3 c^3 x^4 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{7/2}-\frac{3}{40} a^2 c^3 x^3 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{5/2}-\frac{3}{16} a c^3 x^2 \sqrt{1-\frac{1}{a x}} \left (\frac{1}{a x}+1\right )^{3/2}-\frac{9}{16} c^3 x \sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}-\frac{9 c^3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{\frac{1}{a x}+1}\right )}{16 a}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2)^3,x]

[Out]

(-9*c^3*Sqrt[1 - 1/(a*x)]*Sqrt[1 + 1/(a*x)]*x)/16 - (3*a*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(3/2)*x^2)/16 - (
3*a^2*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(5/2)*x^3)/40 - (9*a^3*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(7/2)*x^4
)/280 - (a^4*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(9/2)*x^5)/70 + (a^5*c^3*Sqrt[1 - 1/(a*x)]*(1 + 1/(a*x))^(11/
2)*x^6)/14 - (a^6*c^3*(1 - 1/(a*x))^(3/2)*(1 + 1/(a*x))^(11/2)*x^7)/7 - (9*c^3*ArcTanh[Sqrt[1 - 1/(a*x)]*Sqrt[
1 + 1/(a*x)]])/(16*a)

Rule 6191

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^(2*p)*(1 -
1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] &&  !IntegerQ[n/2] &
& IntegerQ[p]

Rule 6195

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^p, Subst[Int[((
1 - x/a)^(p - n/2)*(1 + x/a)^(p + n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2
*d, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegersQ[2*p, p + n/2] && IntegerQ[m]

Rule 94

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[(n*(d*e - c*f))/((m + 1)*(b*e - a*
f)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] &&  !(SumSimplerQ[p, 1] &&  !SumSimplerQ[m, 1])

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{3 \coth ^{-1}(a x)} \left (c-a^2 c x^2\right )^3 \, dx &=-\left (\left (a^6 c^3\right ) \int e^{3 \coth ^{-1}(a x)} \left (1-\frac{1}{a^2 x^2}\right )^3 x^6 \, dx\right )\\ &=\left (a^6 c^3\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{3/2} \left (1+\frac{x}{a}\right )^{9/2}}{x^8} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7-\frac{1}{7} \left (3 a^5 c^3\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{x}{a}} \left (1+\frac{x}{a}\right )^{9/2}}{x^7} \, dx,x,\frac{1}{x}\right )\\ &=\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7+\frac{1}{14} \left (a^4 c^3\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{9/2}}{x^6 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{1}{70} a^4 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7+\frac{1}{70} \left (9 a^3 c^3\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{7/2}}{x^5 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{9}{280} a^3 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4-\frac{1}{70} a^4 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7+\frac{1}{40} \left (9 a^2 c^3\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{5/2}}{x^4 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{3}{40} a^2 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{9}{280} a^3 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4-\frac{1}{70} a^4 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7+\frac{1}{8} \left (3 a c^3\right ) \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{3/2}}{x^3 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{3}{16} a c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{3}{40} a^2 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{9}{280} a^3 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4-\frac{1}{70} a^4 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7+\frac{1}{16} \left (9 c^3\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x}{a}}}{x^2 \sqrt{1-\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{9}{16} c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x-\frac{3}{16} a c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{3}{40} a^2 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{9}{280} a^3 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4-\frac{1}{70} a^4 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7+\frac{\left (9 c^3\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a}} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{16 a}\\ &=-\frac{9}{16} c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x-\frac{3}{16} a c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{3}{40} a^2 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{9}{280} a^3 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4-\frac{1}{70} a^4 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7-\frac{\left (9 c^3\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{1}{a}-\frac{x^2}{a}} \, dx,x,\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{16 a^2}\\ &=-\frac{9}{16} c^3 \sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}} x-\frac{3}{16} a c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{3/2} x^2-\frac{3}{40} a^2 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{5/2} x^3-\frac{9}{280} a^3 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{7/2} x^4-\frac{1}{70} a^4 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{9/2} x^5+\frac{1}{14} a^5 c^3 \sqrt{1-\frac{1}{a x}} \left (1+\frac{1}{a x}\right )^{11/2} x^6-\frac{1}{7} a^6 c^3 \left (1-\frac{1}{a x}\right )^{3/2} \left (1+\frac{1}{a x}\right )^{11/2} x^7-\frac{9 c^3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a x}} \sqrt{1+\frac{1}{a x}}\right )}{16 a}\\ \end{align*}

Mathematica [A]  time = 0.135254, size = 95, normalized size = 0.3 $-\frac{c^3 \left (a x \sqrt{1-\frac{1}{a^2 x^2}} \left (80 a^6 x^6+280 a^5 x^5+208 a^4 x^4-350 a^3 x^3-656 a^2 x^2-245 a x+368\right )+315 \log \left (x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )\right )}{560 a}$

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcCoth[a*x])*(c - a^2*c*x^2)^3,x]

[Out]

-(c^3*(a*Sqrt[1 - 1/(a^2*x^2)]*x*(368 - 245*a*x - 656*a^2*x^2 - 350*a^3*x^3 + 208*a^4*x^4 + 280*a^5*x^5 + 80*a
^6*x^6) + 315*Log[(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/(560*a)

________________________________________________________________________________________

Maple [A]  time = 0.19, size = 240, normalized size = 0.8 \begin{align*}{\frac{ \left ( ax-1 \right ) ^{2}{c}^{3}}{560\,a \left ( ax+1 \right ) } \left ( -80\,\sqrt{{a}^{2}} \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}{x}^{4}{a}^{4}-280\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{3}{a}^{3}-288\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}{x}^{2}{a}^{2}+70\,\sqrt{{a}^{2}} \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}xa+560\, \left ( \left ( ax-1 \right ) \left ( ax+1 \right ) \right ) ^{3/2}\sqrt{{a}^{2}}-192\, \left ({a}^{2}{x}^{2}-1 \right ) ^{3/2}\sqrt{{a}^{2}}+315\,\sqrt{{a}^{2}}\sqrt{{a}^{2}{x}^{2}-1}xa-315\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}{x}^{2}-1}\sqrt{{a}^{2}}}{\sqrt{{a}^{2}}}} \right ) a \right ) \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}}{\frac{1}{\sqrt{{a}^{2}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^3,x)

[Out]

1/560*(a*x-1)^2*c^3/a*(-80*(a^2)^(1/2)*(a^2*x^2-1)^(3/2)*x^4*a^4-280*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)*x^3*a^3-288
*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)*x^2*a^2+70*(a^2)^(1/2)*(a^2*x^2-1)^(3/2)*x*a+560*((a*x-1)*(a*x+1))^(3/2)*(a^2)^
(1/2)-192*(a^2*x^2-1)^(3/2)*(a^2)^(1/2)+315*(a^2)^(1/2)*(a^2*x^2-1)^(1/2)*x*a-315*ln((a^2*x+(a^2*x^2-1)^(1/2)*
(a^2)^(1/2))/(a^2)^(1/2))*a)/((a*x-1)/(a*x+1))^(3/2)/(a*x+1)/((a*x-1)*(a*x+1))^(1/2)/(a^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.0872, size = 455, normalized size = 1.45 \begin{align*} -\frac{1}{560} \,{\left (\frac{315 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{315 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2}} - \frac{2 \,{\left (315 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{13}{2}} - 2100 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{11}{2}} + 5943 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{9}{2}} - 9216 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{7}{2}} + 8393 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{2}} + 2100 \, c^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}} - 315 \, c^{3} \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{\frac{7 \,{\left (a x - 1\right )} a^{2}}{a x + 1} - \frac{21 \,{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} + \frac{35 \,{\left (a x - 1\right )}^{3} a^{2}}{{\left (a x + 1\right )}^{3}} - \frac{35 \,{\left (a x - 1\right )}^{4} a^{2}}{{\left (a x + 1\right )}^{4}} + \frac{21 \,{\left (a x - 1\right )}^{5} a^{2}}{{\left (a x + 1\right )}^{5}} - \frac{7 \,{\left (a x - 1\right )}^{6} a^{2}}{{\left (a x + 1\right )}^{6}} + \frac{{\left (a x - 1\right )}^{7} a^{2}}{{\left (a x + 1\right )}^{7}} - a^{2}}\right )} a \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^3,x, algorithm="maxima")

[Out]

-1/560*(315*c^3*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 315*c^3*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2 - 2*(3
15*c^3*((a*x - 1)/(a*x + 1))^(13/2) - 2100*c^3*((a*x - 1)/(a*x + 1))^(11/2) + 5943*c^3*((a*x - 1)/(a*x + 1))^(
9/2) - 9216*c^3*((a*x - 1)/(a*x + 1))^(7/2) + 8393*c^3*((a*x - 1)/(a*x + 1))^(5/2) + 2100*c^3*((a*x - 1)/(a*x
+ 1))^(3/2) - 315*c^3*sqrt((a*x - 1)/(a*x + 1)))/(7*(a*x - 1)*a^2/(a*x + 1) - 21*(a*x - 1)^2*a^2/(a*x + 1)^2 +
35*(a*x - 1)^3*a^2/(a*x + 1)^3 - 35*(a*x - 1)^4*a^2/(a*x + 1)^4 + 21*(a*x - 1)^5*a^2/(a*x + 1)^5 - 7*(a*x - 1
)^6*a^2/(a*x + 1)^6 + (a*x - 1)^7*a^2/(a*x + 1)^7 - a^2))*a

________________________________________________________________________________________

Fricas [A]  time = 1.70373, size = 351, normalized size = 1.12 \begin{align*} -\frac{315 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 315 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right ) +{\left (80 \, a^{7} c^{3} x^{7} + 360 \, a^{6} c^{3} x^{6} + 488 \, a^{5} c^{3} x^{5} - 142 \, a^{4} c^{3} x^{4} - 1006 \, a^{3} c^{3} x^{3} - 901 \, a^{2} c^{3} x^{2} + 123 \, a c^{3} x + 368 \, c^{3}\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{560 \, a} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^3,x, algorithm="fricas")

[Out]

-1/560*(315*c^3*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 315*c^3*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (80*a^7*c^3*
x^7 + 360*a^6*c^3*x^6 + 488*a^5*c^3*x^5 - 142*a^4*c^3*x^4 - 1006*a^3*c^3*x^3 - 901*a^2*c^3*x^2 + 123*a*c^3*x +
368*c^3)*sqrt((a*x - 1)/(a*x + 1)))/a

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - c^{3} \left (\int \frac{3 a^{2} x^{2}}{\frac{a x \sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1} - \frac{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1}}\, dx + \int - \frac{3 a^{4} x^{4}}{\frac{a x \sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1} - \frac{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1}}\, dx + \int \frac{a^{6} x^{6}}{\frac{a x \sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1} - \frac{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1}}\, dx + \int - \frac{1}{\frac{a x \sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1} - \frac{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}{a x + 1}}\, dx\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a**2*c*x**2+c)**3,x)

[Out]

-c**3*(Integral(3*a**2*x**2/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a*x/(a*x + 1) - 1/(a*x + 1
))/(a*x + 1)), x) + Integral(-3*a**4*x**4/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a*x/(a*x + 1
) - 1/(a*x + 1))/(a*x + 1)), x) + Integral(a**6*x**6/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sqrt(a
*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1)), x) + Integral(-1/(a*x*sqrt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1) - sq
rt(a*x/(a*x + 1) - 1/(a*x + 1))/(a*x + 1)), x))

________________________________________________________________________________________

Giac [A]  time = 1.205, size = 408, normalized size = 1.3 \begin{align*} -\frac{1}{560} \,{\left (\frac{315 \, c^{3} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{315 \, c^{3} \log \left ({\left | \sqrt{\frac{a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2}} - \frac{2 \,{\left (\frac{2100 \,{\left (a x - 1\right )} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{a x + 1} + \frac{8393 \,{\left (a x - 1\right )}^{2} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{2}} - \frac{9216 \,{\left (a x - 1\right )}^{3} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{3}} + \frac{5943 \,{\left (a x - 1\right )}^{4} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{4}} - \frac{2100 \,{\left (a x - 1\right )}^{5} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{5}} + \frac{315 \,{\left (a x - 1\right )}^{6} c^{3} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{6}} - 315 \, c^{3} \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{a^{2}{\left (\frac{a x - 1}{a x + 1} - 1\right )}^{7}}\right )} a \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a^2*c*x^2+c)^3,x, algorithm="giac")

[Out]

-1/560*(315*c^3*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 315*c^3*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^2 -
2*(2100*(a*x - 1)*c^3*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1) + 8393*(a*x - 1)^2*c^3*sqrt((a*x - 1)/(a*x + 1))/(a
*x + 1)^2 - 9216*(a*x - 1)^3*c^3*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1)^3 + 5943*(a*x - 1)^4*c^3*sqrt((a*x - 1)/(
a*x + 1))/(a*x + 1)^4 - 2100*(a*x - 1)^5*c^3*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1)^5 + 315*(a*x - 1)^6*c^3*sqrt(
(a*x - 1)/(a*x + 1))/(a*x + 1)^6 - 315*c^3*sqrt((a*x - 1)/(a*x + 1)))/(a^2*((a*x - 1)/(a*x + 1) - 1)^7))*a