3.529 \(\int \frac{e^{-2 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x^2} \, dx\)

Optimal. Leaf size=82 \[ -\frac{2 a \left (c-\frac{c}{a x}\right )^{3/2}}{3 c}-4 a \sqrt{c-\frac{c}{a x}}+4 \sqrt{2} a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right ) \]

[Out]

-4*a*Sqrt[c - c/(a*x)] - (2*a*(c - c/(a*x))^(3/2))/(3*c) + 4*Sqrt[2]*a*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt
[2]*Sqrt[c])]

________________________________________________________________________________________

Rubi [A]  time = 0.37594, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.296, Rules used = {6167, 6133, 25, 514, 444, 50, 63, 208} \[ -\frac{2 a \left (c-\frac{c}{a x}\right )^{3/2}}{3 c}-4 a \sqrt{c-\frac{c}{a x}}+4 \sqrt{2} a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a*x)]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

-4*a*Sqrt[c - c/(a*x)] - (2*a*(c - c/(a*x))^(3/2))/(3*c) + 4*Sqrt[2]*a*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt
[2]*Sqrt[c])]

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rule 6133

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[(u*(c + d/x)^p*(1 + a*x)^(n/
2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &
&  !GtQ[c, 0]

Rule 25

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Dist[(d/a)^p, Int[(u*(
a + b*x^n)^(m + p))/x^(n*p), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] &&  !(IntegerQ[m] && NegQ[n])

Rule 514

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{-2 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x^2} \, dx &=-\int \frac{e^{-2 \tanh ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x^2} \, dx\\ &=-\int \frac{\sqrt{c-\frac{c}{a x}} (1-a x)}{x^2 (1+a x)} \, dx\\ &=\frac{a \int \frac{\left (c-\frac{c}{a x}\right )^{3/2}}{x (1+a x)} \, dx}{c}\\ &=\frac{a \int \frac{\left (c-\frac{c}{a x}\right )^{3/2}}{\left (a+\frac{1}{x}\right ) x^2} \, dx}{c}\\ &=-\frac{a \operatorname{Subst}\left (\int \frac{\left (c-\frac{c x}{a}\right )^{3/2}}{a+x} \, dx,x,\frac{1}{x}\right )}{c}\\ &=-\frac{2 a \left (c-\frac{c}{a x}\right )^{3/2}}{3 c}-(2 a) \operatorname{Subst}\left (\int \frac{\sqrt{c-\frac{c x}{a}}}{a+x} \, dx,x,\frac{1}{x}\right )\\ &=-4 a \sqrt{c-\frac{c}{a x}}-\frac{2 a \left (c-\frac{c}{a x}\right )^{3/2}}{3 c}-(4 a c) \operatorname{Subst}\left (\int \frac{1}{(a+x) \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-4 a \sqrt{c-\frac{c}{a x}}-\frac{2 a \left (c-\frac{c}{a x}\right )^{3/2}}{3 c}+\left (8 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-\frac{a x^2}{c}} \, dx,x,\sqrt{c-\frac{c}{a x}}\right )\\ &=-4 a \sqrt{c-\frac{c}{a x}}-\frac{2 a \left (c-\frac{c}{a x}\right )^{3/2}}{3 c}+4 \sqrt{2} a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0702351, size = 69, normalized size = 0.84 \[ \frac{2 (1-7 a x) \sqrt{c-\frac{c}{a x}}}{3 x}+4 \sqrt{2} a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - c/(a*x)]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

(2*Sqrt[c - c/(a*x)]*(1 - 7*a*x))/(3*x) + 4*Sqrt[2]*a*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/(Sqrt[2]*Sqrt[c])]

________________________________________________________________________________________

Maple [B]  time = 0.176, size = 254, normalized size = 3.1 \begin{align*}{\frac{1}{3\,{x}^{2}}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( 6\,\sqrt{ \left ( ax-1 \right ) x}{a}^{5/2}\sqrt{{a}^{-1}}{x}^{3}-18\,\sqrt{a{x}^{2}-x}{a}^{5/2}\sqrt{{a}^{-1}}{x}^{3}+12\,{a}^{3/2} \left ( a{x}^{2}-x \right ) ^{3/2}x\sqrt{{a}^{-1}}+9\,\ln \left ( 1/2\,{\frac{2\,\sqrt{a{x}^{2}-x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ) \sqrt{{a}^{-1}}{x}^{3}{a}^{2}-6\,{a}^{3/2}\sqrt{2}\ln \left ({\frac{2\,\sqrt{2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax-1 \right ) x}a-3\,ax+1}{ax+1}} \right ){x}^{3}-9\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ) \sqrt{{a}^{-1}}{x}^{3}{a}^{2}-2\, \left ( a{x}^{2}-x \right ) ^{3/2}\sqrt{a}\sqrt{{a}^{-1}} \right ){\frac{1}{\sqrt{ \left ( ax-1 \right ) x}}}{\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{a}^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a/x)^(1/2)/(a*x+1)*(a*x-1)/x^2,x)

[Out]

1/3*(c*(a*x-1)/a/x)^(1/2)/x^2*(6*((a*x-1)*x)^(1/2)*a^(5/2)*(1/a)^(1/2)*x^3-18*(a*x^2-x)^(1/2)*a^(5/2)*(1/a)^(1
/2)*x^3+12*a^(3/2)*(a*x^2-x)^(3/2)*x*(1/a)^(1/2)+9*ln(1/2*(2*(a*x^2-x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*(1/a)^(
1/2)*x^3*a^2-6*a^(3/2)*2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*((a*x-1)*x)^(1/2)*a-3*a*x+1)/(a*x+1))*x^3-9*ln(1/2*(2
*((a*x-1)*x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*(1/a)^(1/2)*x^3*a^2-2*(a*x^2-x)^(3/2)*a^(1/2)*(1/a)^(1/2))/((a*x-
1)*x)^(1/2)/a^(1/2)/(1/a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x - 1\right )} \sqrt{c - \frac{c}{a x}}}{{\left (a x + 1\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="maxima")

[Out]

integrate((a*x - 1)*sqrt(c - c/(a*x))/((a*x + 1)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.59768, size = 374, normalized size = 4.56 \begin{align*} \left [\frac{2 \,{\left (3 \, \sqrt{2} a \sqrt{c} x \log \left (-\frac{2 \, \sqrt{2} a \sqrt{c} x \sqrt{\frac{a c x - c}{a x}} + 3 \, a c x - c}{a x + 1}\right ) -{\left (7 \, a x - 1\right )} \sqrt{\frac{a c x - c}{a x}}\right )}}{3 \, x}, -\frac{2 \,{\left (6 \, \sqrt{2} a \sqrt{-c} x \arctan \left (\frac{\sqrt{2} \sqrt{-c} \sqrt{\frac{a c x - c}{a x}}}{2 \, c}\right ) +{\left (7 \, a x - 1\right )} \sqrt{\frac{a c x - c}{a x}}\right )}}{3 \, x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="fricas")

[Out]

[2/3*(3*sqrt(2)*a*sqrt(c)*x*log(-(2*sqrt(2)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + 3*a*c*x - c)/(a*x + 1)) - (7
*a*x - 1)*sqrt((a*c*x - c)/(a*x)))/x, -2/3*(6*sqrt(2)*a*sqrt(-c)*x*arctan(1/2*sqrt(2)*sqrt(-c)*sqrt((a*c*x - c
)/(a*x))/c) + (7*a*x - 1)*sqrt((a*c*x - c)/(a*x)))/x]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (-1 + \frac{1}{a x}\right )} \left (a x - 1\right )}{x^{2} \left (a x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)**(1/2)*(a*x-1)/(a*x+1)/x**2,x)

[Out]

Integral(sqrt(-c*(-1 + 1/(a*x)))*(a*x - 1)/(x**2*(a*x + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError