3.528 \(\int \frac{e^{-2 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x} \, dx\)

Optimal. Leaf size=86 \[ 2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )-4 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right ) \]

[Out]

2*Sqrt[c - c/(a*x)] + 2*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]] - 4*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x
)]/(Sqrt[2]*Sqrt[c])]

________________________________________________________________________________________

Rubi [A]  time = 0.373219, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 9, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {6167, 6133, 25, 434, 446, 84, 156, 63, 208} \[ 2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )-4 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - c/(a*x)]/(E^(2*ArcCoth[a*x])*x),x]

[Out]

2*Sqrt[c - c/(a*x)] + 2*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]] - 4*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x
)]/(Sqrt[2]*Sqrt[c])]

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rule 6133

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[(u*(c + d/x)^p*(1 + a*x)^(n/
2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &
&  !GtQ[c, 0]

Rule 25

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Dist[(d/a)^p, Int[(u*(
a + b*x^n)^(m + p))/x^(n*p), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] &&  !(IntegerQ[m] && NegQ[n])

Rule 434

Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[((a + b*x^n)^p*(d + c*x
^n)^q)/x^(n*q), x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] ||  !IntegerQ[p])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p -
 1))/(b*d*(p - 1)), x] + Dist[1/(b*d), Int[((b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*(e + f*x)^(p -
 2))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{-2 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x} \, dx &=-\int \frac{e^{-2 \tanh ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x} \, dx\\ &=-\int \frac{\sqrt{c-\frac{c}{a x}} (1-a x)}{x (1+a x)} \, dx\\ &=\frac{a \int \frac{\left (c-\frac{c}{a x}\right )^{3/2}}{1+a x} \, dx}{c}\\ &=\frac{a \int \frac{\left (c-\frac{c}{a x}\right )^{3/2}}{\left (a+\frac{1}{x}\right ) x} \, dx}{c}\\ &=-\frac{a \operatorname{Subst}\left (\int \frac{\left (c-\frac{c x}{a}\right )^{3/2}}{x (a+x)} \, dx,x,\frac{1}{x}\right )}{c}\\ &=2 \sqrt{c-\frac{c}{a x}}-\frac{a \operatorname{Subst}\left (\int \frac{c^2-\frac{3 c^2 x}{a}}{x (a+x) \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )}{c}\\ &=2 \sqrt{c-\frac{c}{a x}}-c \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )+(4 c) \operatorname{Subst}\left (\int \frac{1}{(a+x) \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=2 \sqrt{c-\frac{c}{a x}}+(2 a) \operatorname{Subst}\left (\int \frac{1}{a-\frac{a x^2}{c}} \, dx,x,\sqrt{c-\frac{c}{a x}}\right )-(8 a) \operatorname{Subst}\left (\int \frac{1}{2 a-\frac{a x^2}{c}} \, dx,x,\sqrt{c-\frac{c}{a x}}\right )\\ &=2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )-4 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0423367, size = 86, normalized size = 1. \[ 2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )-4 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{2} \sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - c/(a*x)]/(E^(2*ArcCoth[a*x])*x),x]

[Out]

2*Sqrt[c - c/(a*x)] + 2*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]] - 4*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x
)]/(Sqrt[2]*Sqrt[c])]

________________________________________________________________________________________

Maple [B]  time = 0.174, size = 228, normalized size = 2.7 \begin{align*} -{\frac{1}{x}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( -4\,\sqrt{a{x}^{2}-x}{a}^{3/2}\sqrt{{a}^{-1}}{x}^{2}+2\,{a}^{3/2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax-1 \right ) x}{x}^{2}+2\, \left ( a{x}^{2}-x \right ) ^{3/2}\sqrt{a}\sqrt{{a}^{-1}}+2\,\ln \left ( 1/2\,{\frac{2\,\sqrt{a{x}^{2}-x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ) \sqrt{{a}^{-1}}{x}^{2}a-2\,\sqrt{a}\sqrt{2}\ln \left ({\frac{2\,\sqrt{2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax-1 \right ) x}a-3\,ax+1}{ax+1}} \right ){x}^{2}-3\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ) \sqrt{{a}^{-1}}{x}^{2}a \right ){\frac{1}{\sqrt{ \left ( ax-1 \right ) x}}}{\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{a}^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a/x)^(1/2)/(a*x+1)*(a*x-1)/x,x)

[Out]

-(c*(a*x-1)/a/x)^(1/2)/x*(-4*(a*x^2-x)^(1/2)*a^(3/2)*(1/a)^(1/2)*x^2+2*a^(3/2)*(1/a)^(1/2)*((a*x-1)*x)^(1/2)*x
^2+2*(a*x^2-x)^(3/2)*a^(1/2)*(1/a)^(1/2)+2*ln(1/2*(2*(a*x^2-x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*(1/a)^(1/2)*x^2
*a-2*a^(1/2)*2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*((a*x-1)*x)^(1/2)*a-3*a*x+1)/(a*x+1))*x^2-3*ln(1/2*(2*((a*x-1)*
x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*(1/a)^(1/2)*x^2*a)/((a*x-1)*x)^(1/2)/a^(1/2)/(1/a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x - 1\right )} \sqrt{c - \frac{c}{a x}}}{{\left (a x + 1\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="maxima")

[Out]

integrate((a*x - 1)*sqrt(c - c/(a*x))/((a*x + 1)*x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.64372, size = 479, normalized size = 5.57 \begin{align*} \left [2 \, \sqrt{2} \sqrt{c} \log \left (\frac{2 \, \sqrt{2} a \sqrt{c} x \sqrt{\frac{a c x - c}{a x}} - 3 \, a c x + c}{a x + 1}\right ) + \sqrt{c} \log \left (-2 \, a c x - 2 \, a \sqrt{c} x \sqrt{\frac{a c x - c}{a x}} + c\right ) + 2 \, \sqrt{\frac{a c x - c}{a x}}, 4 \, \sqrt{2} \sqrt{-c} \arctan \left (\frac{\sqrt{2} \sqrt{-c} \sqrt{\frac{a c x - c}{a x}}}{2 \, c}\right ) - 2 \, \sqrt{-c} \arctan \left (\frac{\sqrt{-c} \sqrt{\frac{a c x - c}{a x}}}{c}\right ) + 2 \, \sqrt{\frac{a c x - c}{a x}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="fricas")

[Out]

[2*sqrt(2)*sqrt(c)*log((2*sqrt(2)*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) - 3*a*c*x + c)/(a*x + 1)) + sqrt(c)*log(
-2*a*c*x - 2*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + c) + 2*sqrt((a*c*x - c)/(a*x)), 4*sqrt(2)*sqrt(-c)*arctan(1
/2*sqrt(2)*sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) - 2*sqrt(-c)*arctan(sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) + 2*sqr
t((a*c*x - c)/(a*x))]

________________________________________________________________________________________

Sympy [A]  time = 11.3001, size = 80, normalized size = 0.93 \begin{align*} - \frac{2 c \operatorname{atan}{\left (\frac{\sqrt{c - \frac{c}{a x}}}{\sqrt{- c}} \right )}}{\sqrt{- c}} + \frac{4 \sqrt{2} c \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c - \frac{c}{a x}}}{2 \sqrt{- c}} \right )}}{\sqrt{- c}} + 2 \sqrt{c - \frac{c}{a x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)**(1/2)*(a*x-1)/(a*x+1)/x,x)

[Out]

-2*c*atan(sqrt(c - c/(a*x))/sqrt(-c))/sqrt(-c) + 4*sqrt(2)*c*atan(sqrt(2)*sqrt(c - c/(a*x))/(2*sqrt(-c)))/sqrt
(-c) + 2*sqrt(c - c/(a*x))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError