3.502 \(\int \frac{e^{2 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x} \, dx\)

Optimal. Leaf size=47 \[ 2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right ) \]

[Out]

2*Sqrt[c - c/(a*x)] + 2*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]]

________________________________________________________________________________________

Rubi [A]  time = 0.329759, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.296, Rules used = {6167, 6133, 25, 514, 446, 80, 63, 208} \[ 2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(E^(2*ArcCoth[a*x])*Sqrt[c - c/(a*x)])/x,x]

[Out]

2*Sqrt[c - c/(a*x)] + 2*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]]

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rule 6133

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[(u*(c + d/x)^p*(1 + a*x)^(n/
2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &
&  !GtQ[c, 0]

Rule 25

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Dist[(d/a)^p, Int[(u*(
a + b*x^n)^(m + p))/x^(n*p), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] &&  !(IntegerQ[m] && NegQ[n])

Rule 514

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{2 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x} \, dx &=-\int \frac{e^{2 \tanh ^{-1}(a x)} \sqrt{c-\frac{c}{a x}}}{x} \, dx\\ &=-\int \frac{\sqrt{c-\frac{c}{a x}} (1+a x)}{x (1-a x)} \, dx\\ &=\frac{c \int \frac{1+a x}{\sqrt{c-\frac{c}{a x}} x^2} \, dx}{a}\\ &=\frac{c \int \frac{a+\frac{1}{x}}{\sqrt{c-\frac{c}{a x}} x} \, dx}{a}\\ &=-\frac{c \operatorname{Subst}\left (\int \frac{a+x}{x \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )}{a}\\ &=2 \sqrt{c-\frac{c}{a x}}-c \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=2 \sqrt{c-\frac{c}{a x}}+(2 a) \operatorname{Subst}\left (\int \frac{1}{a-\frac{a x^2}{c}} \, dx,x,\sqrt{c-\frac{c}{a x}}\right )\\ &=2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0326874, size = 47, normalized size = 1. \[ 2 \sqrt{c-\frac{c}{a x}}+2 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*ArcCoth[a*x])*Sqrt[c - c/(a*x)])/x,x]

[Out]

2*Sqrt[c - c/(a*x)] + 2*Sqrt[c]*ArcTanh[Sqrt[c - c/(a*x)]/Sqrt[c]]

________________________________________________________________________________________

Maple [B]  time = 0.17, size = 99, normalized size = 2.1 \begin{align*} -{\frac{1}{x}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( -2\,{a}^{3/2}\sqrt{ \left ( ax-1 \right ) x}{x}^{2}+2\, \left ( a{x}^{2}-x \right ) ^{3/2}\sqrt{a}-\ln \left ({\frac{1}{2} \left ( 2\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+2\,ax-1 \right ){\frac{1}{\sqrt{a}}}} \right ){x}^{2}a \right ){\frac{1}{\sqrt{ \left ( ax-1 \right ) x}}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(a*x-1)*(c-c/a/x)^(1/2)/x,x)

[Out]

-(c*(a*x-1)/a/x)^(1/2)/x*(-2*a^(3/2)*((a*x-1)*x)^(1/2)*x^2+2*(a*x^2-x)^(3/2)*a^(1/2)-ln(1/2*(2*((a*x-1)*x)^(1/
2)*a^(1/2)+2*a*x-1)/a^(1/2))*x^2*a)/((a*x-1)*x)^(1/2)/a^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a x + 1\right )} \sqrt{c - \frac{c}{a x}}}{{\left (a x - 1\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a/x)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate((a*x + 1)*sqrt(c - c/(a*x))/((a*x - 1)*x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.62098, size = 247, normalized size = 5.26 \begin{align*} \left [\sqrt{c} \log \left (-2 \, a c x - 2 \, a \sqrt{c} x \sqrt{\frac{a c x - c}{a x}} + c\right ) + 2 \, \sqrt{\frac{a c x - c}{a x}}, -2 \, \sqrt{-c} \arctan \left (\frac{\sqrt{-c} \sqrt{\frac{a c x - c}{a x}}}{c}\right ) + 2 \, \sqrt{\frac{a c x - c}{a x}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a/x)^(1/2)/x,x, algorithm="fricas")

[Out]

[sqrt(c)*log(-2*a*c*x - 2*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + c) + 2*sqrt((a*c*x - c)/(a*x)), -2*sqrt(-c)*ar
ctan(sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) + 2*sqrt((a*c*x - c)/(a*x))]

________________________________________________________________________________________

Sympy [A]  time = 9.74763, size = 39, normalized size = 0.83 \begin{align*} - \frac{2 c \operatorname{atan}{\left (\frac{\sqrt{c - \frac{c}{a x}}}{\sqrt{- c}} \right )}}{\sqrt{- c}} + 2 \sqrt{c - \frac{c}{a x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a/x)**(1/2)/x,x)

[Out]

-2*c*atan(sqrt(c - c/(a*x))/sqrt(-c))/sqrt(-c) + 2*sqrt(c - c/(a*x))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)*(c-c/a/x)^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError