3.490 \(\int e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} x^2 \, dx\)

Optimal. Leaf size=164 \[ \frac{c x^3 \sqrt{1-\frac{1}{a^2 x^2}}}{3 \sqrt{c-\frac{c}{a x}}}+\frac{c x^2 \sqrt{1-\frac{1}{a^2 x^2}}}{12 a \sqrt{c-\frac{c}{a x}}}-\frac{c x \sqrt{1-\frac{1}{a^2 x^2}}}{8 a^2 \sqrt{c-\frac{c}{a x}}}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{8 a^3} \]

[Out]

-(c*Sqrt[1 - 1/(a^2*x^2)]*x)/(8*a^2*Sqrt[c - c/(a*x)]) + (c*Sqrt[1 - 1/(a^2*x^2)]*x^2)/(12*a*Sqrt[c - c/(a*x)]
) + (c*Sqrt[1 - 1/(a^2*x^2)]*x^3)/(3*Sqrt[c - c/(a*x)]) + (Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqr
t[c - c/(a*x)]])/(8*a^3)

________________________________________________________________________________________

Rubi [A]  time = 0.342206, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {6178, 863, 873, 875, 208} \[ \frac{c x^3 \sqrt{1-\frac{1}{a^2 x^2}}}{3 \sqrt{c-\frac{c}{a x}}}+\frac{c x^2 \sqrt{1-\frac{1}{a^2 x^2}}}{12 a \sqrt{c-\frac{c}{a x}}}-\frac{c x \sqrt{1-\frac{1}{a^2 x^2}}}{8 a^2 \sqrt{c-\frac{c}{a x}}}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{8 a^3} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]*Sqrt[c - c/(a*x)]*x^2,x]

[Out]

-(c*Sqrt[1 - 1/(a^2*x^2)]*x)/(8*a^2*Sqrt[c - c/(a*x)]) + (c*Sqrt[1 - 1/(a^2*x^2)]*x^2)/(12*a*Sqrt[c - c/(a*x)]
) + (c*Sqrt[1 - 1/(a^2*x^2)]*x^3)/(3*Sqrt[c - c/(a*x)]) + (Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqr
t[c - c/(a*x)]])/(8*a^3)

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rule 863

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x
)^m*(f + g*x)^(n + 1)*(a + c*x^2)^p)/(g*(n + 1)), x] + Dist[(c*m)/(e*g*(n + 1)), Int[(d + e*x)^(m + 1)*(f + g*
x)^(n + 1)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e
^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p, 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0]
)

Rule 873

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e^2*(d
+ e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g)), x] - Dist[(e*(m - n - 2))/((n
 + 1)*(e*f + d*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p},
 x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[
2*p]

Rule 875

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e^2, Subst[I
nt[1/(c*(e*f + d*g) + e^2*g*x^2), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} x^2 \, dx &=-\left (c \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{x^2}{a^2}}}{x^4 \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )\right )\\ &=\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^3}{3 \sqrt{c-\frac{c}{a x}}}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{c-\frac{c x}{a}}}{x^3 \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{6 a}\\ &=\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^2}{12 a \sqrt{c-\frac{c}{a x}}}+\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^3}{3 \sqrt{c-\frac{c}{a x}}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{c-\frac{c x}{a}}}{x^2 \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{8 a^2}\\ &=-\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x}{8 a^2 \sqrt{c-\frac{c}{a x}}}+\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^2}{12 a \sqrt{c-\frac{c}{a x}}}+\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^3}{3 \sqrt{c-\frac{c}{a x}}}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{c-\frac{c x}{a}}}{x \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{16 a^3}\\ &=-\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x}{8 a^2 \sqrt{c-\frac{c}{a x}}}+\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^2}{12 a \sqrt{c-\frac{c}{a x}}}+\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^3}{3 \sqrt{c-\frac{c}{a x}}}-\frac{c^2 \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{a^2}+\frac{c^2 x^2}{a^2}} \, dx,x,\frac{\sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{8 a^5}\\ &=-\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x}{8 a^2 \sqrt{c-\frac{c}{a x}}}+\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^2}{12 a \sqrt{c-\frac{c}{a x}}}+\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x^3}{3 \sqrt{c-\frac{c}{a x}}}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{8 a^3}\\ \end{align*}

Mathematica [A]  time = 0.463492, size = 147, normalized size = 0.9 \[ \frac{\frac{2 a^2 x^2 \sqrt{1-\frac{1}{a^2 x^2}} \left (8 a^2 x^2+2 a x-3\right ) \sqrt{c-\frac{c}{a x}}}{a x-1}+3 \sqrt{c} \log \left (2 a^2 \sqrt{c} x^2 \sqrt{1-\frac{1}{a^2 x^2}} \sqrt{c-\frac{c}{a x}}+c \left (2 a^2 x^2-a x-1\right )\right )-3 \sqrt{c} \log (1-a x)}{48 a^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[a*x]*Sqrt[c - c/(a*x)]*x^2,x]

[Out]

((2*a^2*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*x^2*(-3 + 2*a*x + 8*a^2*x^2))/(-1 + a*x) - 3*Sqrt[c]*Log[1 - a
*x] + 3*Sqrt[c]*Log[2*a^2*Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)]*Sqrt[c - c/(a*x)]*x^2 + c*(-1 - a*x + 2*a^2*x^2)])/(48
*a^3)

________________________________________________________________________________________

Maple [A]  time = 0.175, size = 121, normalized size = 0.7 \begin{align*}{\frac{x}{48}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( 16\,{a}^{5/2}{x}^{2}\sqrt{ \left ( ax+1 \right ) x}+4\,{a}^{3/2}x\sqrt{ \left ( ax+1 \right ) x}-6\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}+3\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}+2\,ax+1}{\sqrt{a}}} \right ) \right ){\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}{a}^{-{\frac{5}{2}}}{\frac{1}{\sqrt{ \left ( ax+1 \right ) x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*x^2*(c-c/a/x)^(1/2),x)

[Out]

1/48/((a*x-1)/(a*x+1))^(1/2)*(c*(a*x-1)/a/x)^(1/2)*x/a^(5/2)*(16*a^(5/2)*x^2*((a*x+1)*x)^(1/2)+4*a^(3/2)*x*((a
*x+1)*x)^(1/2)-6*((a*x+1)*x)^(1/2)*a^(1/2)+3*ln(1/2*(2*((a*x+1)*x)^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2)))/((a*x+1)*x
)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a x}} x^{2}}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x^2*(c-c/a/x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))*x^2/sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.22936, size = 717, normalized size = 4.37 \begin{align*} \left [\frac{3 \,{\left (a x - 1\right )} \sqrt{c} \log \left (-\frac{8 \, a^{3} c x^{3} - 7 \, a c x + 4 \,{\left (2 \, a^{3} x^{3} + 3 \, a^{2} x^{2} + a x\right )} \sqrt{c} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}} - c}{a x - 1}\right ) + 4 \,{\left (8 \, a^{4} x^{4} + 10 \, a^{3} x^{3} - a^{2} x^{2} - 3 \, a x\right )} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}}}{96 \,{\left (a^{4} x - a^{3}\right )}}, -\frac{3 \,{\left (a x - 1\right )} \sqrt{-c} \arctan \left (\frac{2 \,{\left (a^{2} x^{2} + a x\right )} \sqrt{-c} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) - 2 \,{\left (8 \, a^{4} x^{4} + 10 \, a^{3} x^{3} - a^{2} x^{2} - 3 \, a x\right )} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}}}{48 \,{\left (a^{4} x - a^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x^2*(c-c/a/x)^(1/2),x, algorithm="fricas")

[Out]

[1/96*(3*(a*x - 1)*sqrt(c)*log(-(8*a^3*c*x^3 - 7*a*c*x + 4*(2*a^3*x^3 + 3*a^2*x^2 + a*x)*sqrt(c)*sqrt((a*x - 1
)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)) - c)/(a*x - 1)) + 4*(8*a^4*x^4 + 10*a^3*x^3 - a^2*x^2 - 3*a*x)*sqrt((a*x
- 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)))/(a^4*x - a^3), -1/48*(3*(a*x - 1)*sqrt(-c)*arctan(2*(a^2*x^2 + a*x)*s
qrt(-c)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*x^2 - a*c*x - c)) - 2*(8*a^4*x^4 + 10*a^3*x
^3 - a^2*x^2 - 3*a*x)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x - c)/(a*x)))/(a^4*x - a^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*x**2*(c-c/a/x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a x}} x^{2}}{\sqrt{\frac{a x - 1}{a x + 1}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*x^2*(c-c/a/x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a*x))*x^2/sqrt((a*x - 1)/(a*x + 1)), x)