### 3.466 $$\int e^{-\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} \, dx$$

Optimal. Leaf size=79 $\frac{c x \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}-\frac{3 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{a}$

[Out]

(c*Sqrt[1 - 1/(a^2*x^2)]*x)/Sqrt[c - c/(a*x)] - (3*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/
(a*x)]])/a

________________________________________________________________________________________

Rubi [A]  time = 0.156439, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.167, Rules used = {6177, 879, 875, 208} $\frac{c x \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}-\frac{3 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{a}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[c - c/(a*x)]/E^ArcCoth[a*x],x]

[Out]

(c*Sqrt[1 - 1/(a^2*x^2)]*x)/Sqrt[c - c/(a*x)] - (3*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[1 - 1/(a^2*x^2)])/Sqrt[c - c/
(a*x)]])/a

Rule 6177

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c + d*x)^(p -
n)*(1 - x^2/a^2)^(n/2))/x^2, x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1)
/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1]) && IntegerQ[2*p]

Rule 879

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e^2*(e*f
- d*g)*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*(a + c*x^2)^(p + 1))/(c*g*(n + 1)*(e*f + d*g)), x] - Dist[(e*(e*f*
(p + 1) - d*g*(2*n + p + 3)))/(g*(n + 1)*(e*f + d*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + c*x^2)^p,
x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] &&
EqQ[m + p - 1, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 875

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e^2, Subst[I
nt[1/(c*(e*f + d*g) + e^2*g*x^2), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
NeQ[e*f - d*g, 0] && EqQ[c*d^2 + a*e^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{-\coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{\left (c-\frac{c x}{a}\right )^{3/2}}{x^2 \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{c}\\ &=\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x}{\sqrt{c-\frac{c}{a x}}}+\frac{3 \operatorname{Subst}\left (\int \frac{\sqrt{c-\frac{c x}{a}}}{x \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{2 a}\\ &=\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x}{\sqrt{c-\frac{c}{a x}}}+\frac{\left (3 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{a^2}+\frac{c^2 x^2}{a^2}} \, dx,x,\frac{\sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{a^3}\\ &=\frac{c \sqrt{1-\frac{1}{a^2 x^2}} x}{\sqrt{c-\frac{c}{a x}}}-\frac{3 \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{1-\frac{1}{a^2 x^2}}}{\sqrt{c-\frac{c}{a x}}}\right )}{a}\\ \end{align*}

Mathematica [A]  time = 0.0379987, size = 65, normalized size = 0.82 $\frac{\sqrt{c-\frac{c}{a x}} \left (x \sqrt{\frac{1}{a x}+1}-\frac{3 \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )}{a}\right )}{\sqrt{1-\frac{1}{a x}}}$

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[c - c/(a*x)]/E^ArcCoth[a*x],x]

[Out]

(Sqrt[c - c/(a*x)]*(Sqrt[1 + 1/(a*x)]*x - (3*ArcTanh[Sqrt[1 + 1/(a*x)]])/a))/Sqrt[1 - 1/(a*x)]

________________________________________________________________________________________

Maple [A]  time = 0.176, size = 101, normalized size = 1.3 \begin{align*}{\frac{ \left ( ax+1 \right ) x}{2\,ax-2}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}}\sqrt{{\frac{ax-1}{ax+1}}} \left ( 2\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}-3\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}+2\,ax+1}{\sqrt{a}}} \right ) \right ){\frac{1}{\sqrt{ \left ( ax+1 \right ) x}}}{\frac{1}{\sqrt{a}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x)

[Out]

1/2*((a*x-1)/(a*x+1))^(1/2)*(a*x+1)*(c*(a*x-1)/a/x)^(1/2)*x*(2*((a*x+1)*x)^(1/2)*a^(1/2)-3*ln(1/2*(2*((a*x+1)*
x)^(1/2)*a^(1/2)+2*a*x+1)/a^(1/2)))/(a*x-1)/((a*x+1)*x)^(1/2)/a^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c - \frac{c}{a x}} \sqrt{\frac{a x - 1}{a x + 1}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))*sqrt((a*x - 1)/(a*x + 1)), x)

________________________________________________________________________________________

Fricas [B]  time = 2.56923, size = 635, normalized size = 8.04 \begin{align*} \left [\frac{3 \,{\left (a x - 1\right )} \sqrt{c} \log \left (-\frac{8 \, a^{3} c x^{3} - 7 \, a c x - 4 \,{\left (2 \, a^{3} x^{3} + 3 \, a^{2} x^{2} + a x\right )} \sqrt{c} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}} - c}{a x - 1}\right ) + 4 \,{\left (a^{2} x^{2} + a x\right )} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}}}{4 \,{\left (a^{2} x - a\right )}}, \frac{3 \,{\left (a x - 1\right )} \sqrt{-c} \arctan \left (\frac{2 \,{\left (a^{2} x^{2} + a x\right )} \sqrt{-c} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}}}{2 \, a^{2} c x^{2} - a c x - c}\right ) + 2 \,{\left (a^{2} x^{2} + a x\right )} \sqrt{\frac{a x - 1}{a x + 1}} \sqrt{\frac{a c x - c}{a x}}}{2 \,{\left (a^{2} x - a\right )}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(3*(a*x - 1)*sqrt(c)*log(-(8*a^3*c*x^3 - 7*a*c*x - 4*(2*a^3*x^3 + 3*a^2*x^2 + a*x)*sqrt(c)*sqrt((a*x - 1)
/(a*x + 1))*sqrt((a*c*x - c)/(a*x)) - c)/(a*x - 1)) + 4*(a^2*x^2 + a*x)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x
- c)/(a*x)))/(a^2*x - a), 1/2*(3*(a*x - 1)*sqrt(-c)*arctan(2*(a^2*x^2 + a*x)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1)
)*sqrt((a*c*x - c)/(a*x))/(2*a^2*c*x^2 - a*c*x - c)) + 2*(a^2*x^2 + a*x)*sqrt((a*x - 1)/(a*x + 1))*sqrt((a*c*x
- c)/(a*x)))/(a^2*x - a)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)**(1/2)*((a*x-1)/(a*x+1))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c - \frac{c}{a x}} \sqrt{\frac{a x - 1}{a x + 1}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c/a/x)^(1/2)*((a*x-1)/(a*x+1))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a*x))*sqrt((a*x - 1)/(a*x + 1)), x)