3.459 \(\int e^{3 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} \, dx\)

Optimal. Leaf size=152 \[ \frac{x \sqrt{\frac{1}{a x}+1} \sqrt{c-\frac{c}{a x}}}{\sqrt{1-\frac{1}{a x}}}+\frac{5 \sqrt{c-\frac{c}{a x}} \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )}{a \sqrt{1-\frac{1}{a x}}}-\frac{4 \sqrt{2} \sqrt{c-\frac{c}{a x}} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )}{a \sqrt{1-\frac{1}{a x}}} \]

[Out]

(Sqrt[1 + 1/(a*x)]*Sqrt[c - c/(a*x)]*x)/Sqrt[1 - 1/(a*x)] + (5*Sqrt[c - c/(a*x)]*ArcTanh[Sqrt[1 + 1/(a*x)]])/(
a*Sqrt[1 - 1/(a*x)]) - (4*Sqrt[2]*Sqrt[c - c/(a*x)]*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/(a*Sqrt[1 - 1/(a*x)])

________________________________________________________________________________________

Rubi [A]  time = 0.133691, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.292, Rules used = {6182, 6179, 98, 156, 63, 208, 206} \[ \frac{x \sqrt{\frac{1}{a x}+1} \sqrt{c-\frac{c}{a x}}}{\sqrt{1-\frac{1}{a x}}}+\frac{5 \sqrt{c-\frac{c}{a x}} \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )}{a \sqrt{1-\frac{1}{a x}}}-\frac{4 \sqrt{2} \sqrt{c-\frac{c}{a x}} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )}{a \sqrt{1-\frac{1}{a x}}} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcCoth[a*x])*Sqrt[c - c/(a*x)],x]

[Out]

(Sqrt[1 + 1/(a*x)]*Sqrt[c - c/(a*x)]*x)/Sqrt[1 - 1/(a*x)] + (5*Sqrt[c - c/(a*x)]*ArcTanh[Sqrt[1 + 1/(a*x)]])/(
a*Sqrt[1 - 1/(a*x)]) - (4*Sqrt[2]*Sqrt[c - c/(a*x)]*ArcTanh[Sqrt[1 + 1/(a*x)]/Sqrt[2]])/(a*Sqrt[1 - 1/(a*x)])

Rule 6182

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Dist[(c + d/x)^p/(1 + d/(c*x))^
p, Int[u*(1 + d/(c*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&
!IntegerQ[n/2] &&  !(IntegerQ[p] || GtQ[c, 0])

Rule 6179

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> -Dist[c^p, Subst[Int[((1 + (d*x)/c)^
p*(1 + x/a)^(n/2))/(x^2*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0
] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int e^{3 \coth ^{-1}(a x)} \sqrt{c-\frac{c}{a x}} \, dx &=\frac{\sqrt{c-\frac{c}{a x}} \int e^{3 \coth ^{-1}(a x)} \sqrt{1-\frac{1}{a x}} \, dx}{\sqrt{1-\frac{1}{a x}}}\\ &=-\frac{\sqrt{c-\frac{c}{a x}} \operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^{3/2}}{x^2 \left (1-\frac{x}{a}\right )} \, dx,x,\frac{1}{x}\right )}{\sqrt{1-\frac{1}{a x}}}\\ &=\frac{\sqrt{1+\frac{1}{a x}} \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-\frac{1}{a x}}}+\frac{\sqrt{c-\frac{c}{a x}} \operatorname{Subst}\left (\int \frac{-\frac{5}{2 a}-\frac{3 x}{2 a^2}}{x \left (1-\frac{x}{a}\right ) \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{\sqrt{1-\frac{1}{a x}}}\\ &=\frac{\sqrt{1+\frac{1}{a x}} \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-\frac{1}{a x}}}-\frac{\left (4 \sqrt{c-\frac{c}{a x}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-\frac{x}{a}\right ) \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{a^2 \sqrt{1-\frac{1}{a x}}}-\frac{\left (5 \sqrt{c-\frac{c}{a x}}\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{2 a \sqrt{1-\frac{1}{a x}}}\\ &=\frac{\sqrt{1+\frac{1}{a x}} \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-\frac{1}{a x}}}-\frac{\left (5 \sqrt{c-\frac{c}{a x}}\right ) \operatorname{Subst}\left (\int \frac{1}{-a+a x^2} \, dx,x,\sqrt{1+\frac{1}{a x}}\right )}{\sqrt{1-\frac{1}{a x}}}-\frac{\left (8 \sqrt{c-\frac{c}{a x}}\right ) \operatorname{Subst}\left (\int \frac{1}{2-x^2} \, dx,x,\sqrt{1+\frac{1}{a x}}\right )}{a \sqrt{1-\frac{1}{a x}}}\\ &=\frac{\sqrt{1+\frac{1}{a x}} \sqrt{c-\frac{c}{a x}} x}{\sqrt{1-\frac{1}{a x}}}+\frac{5 \sqrt{c-\frac{c}{a x}} \tanh ^{-1}\left (\sqrt{1+\frac{1}{a x}}\right )}{a \sqrt{1-\frac{1}{a x}}}-\frac{4 \sqrt{2} \sqrt{c-\frac{c}{a x}} \tanh ^{-1}\left (\frac{\sqrt{1+\frac{1}{a x}}}{\sqrt{2}}\right )}{a \sqrt{1-\frac{1}{a x}}}\\ \end{align*}

Mathematica [A]  time = 0.0726192, size = 93, normalized size = 0.61 \[ \frac{\sqrt{c-\frac{c}{a x}} \left (a x \sqrt{\frac{1}{a x}+1}+5 \tanh ^{-1}\left (\sqrt{\frac{1}{a x}+1}\right )-4 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{\frac{1}{a x}+1}}{\sqrt{2}}\right )\right )}{a \sqrt{1-\frac{1}{a x}}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(3*ArcCoth[a*x])*Sqrt[c - c/(a*x)],x]

[Out]

(Sqrt[c - c/(a*x)]*(a*Sqrt[1 + 1/(a*x)]*x + 5*ArcTanh[Sqrt[1 + 1/(a*x)]] - 4*Sqrt[2]*ArcTanh[Sqrt[1 + 1/(a*x)]
/Sqrt[2]]))/(a*Sqrt[1 - 1/(a*x)])

________________________________________________________________________________________

Maple [A]  time = 0.18, size = 160, normalized size = 1.1 \begin{align*}{\frac{ \left ( ax-1 \right ) x}{2\,ax+2}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( 2\,\sqrt{ \left ( ax+1 \right ) x}{a}^{3/2}\sqrt{{a}^{-1}}-4\,\sqrt{2}\ln \left ({\frac{2\,\sqrt{2}\sqrt{{a}^{-1}}\sqrt{ \left ( ax+1 \right ) x}a+3\,ax+1}{ax-1}} \right ) \sqrt{a}+5\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax+1 \right ) x}\sqrt{a}+2\,ax+1}{\sqrt{a}}} \right ) a\sqrt{{a}^{-1}} \right ) \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{ \left ( ax+1 \right ) x}}}{a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{a}^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2),x)

[Out]

1/2/((a*x-1)/(a*x+1))^(3/2)*(a*x-1)/(a*x+1)*(c*(a*x-1)/a/x)^(1/2)*x*(2*((a*x+1)*x)^(1/2)*a^(3/2)*(1/a)^(1/2)-4
*2^(1/2)*ln((2*2^(1/2)*(1/a)^(1/2)*((a*x+1)*x)^(1/2)*a+3*a*x+1)/(a*x-1))*a^(1/2)+5*ln(1/2*(2*((a*x+1)*x)^(1/2)
*a^(1/2)+2*a*x+1)/a^(1/2))*a*(1/a)^(1/2))/((a*x+1)*x)^(1/2)/a^(3/2)/(1/a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a x}}}{\left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c - c/(a*x))/((a*x - 1)/(a*x + 1))^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(c-c/a/x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c - \frac{c}{a x}}}{\left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(c-c/a/x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c - c/(a*x))/((a*x - 1)/(a*x + 1))^(3/2), x)