3.452 \(\int \frac{e^{2 \coth ^{-1}(a x)}}{(c-\frac{c}{a x})^{3/2}} \, dx\)

Optimal. Leaf size=95 \[ \frac{7 \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )}{a c^{3/2}}+\frac{x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{7}{a c \sqrt{c-\frac{c}{a x}}}-\frac{7}{3 a \left (c-\frac{c}{a x}\right )^{3/2}} \]

[Out]

-7/(3*a*(c - c/(a*x))^(3/2)) - 7/(a*c*Sqrt[c - c/(a*x)]) + x/(c - c/(a*x))^(3/2) + (7*ArcTanh[Sqrt[c - c/(a*x)
]/Sqrt[c]])/(a*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.200235, antiderivative size = 95, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.375, Rules used = {6167, 6133, 25, 514, 375, 78, 51, 63, 208} \[ \frac{7 \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )}{a c^{3/2}}+\frac{x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{7}{a c \sqrt{c-\frac{c}{a x}}}-\frac{7}{3 a \left (c-\frac{c}{a x}\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*ArcCoth[a*x])/(c - c/(a*x))^(3/2),x]

[Out]

-7/(3*a*(c - c/(a*x))^(3/2)) - 7/(a*c*Sqrt[c - c/(a*x)]) + x/(c - c/(a*x))^(3/2) + (7*ArcTanh[Sqrt[c - c/(a*x)
]/Sqrt[c]])/(a*c^(3/2))

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rule 6133

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[(u*(c + d/x)^p*(1 + a*x)^(n/
2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[p] && IntegerQ[n/2] &
&  !GtQ[c, 0]

Rule 25

Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Dist[(d/a)^p, Int[(u*(
a + b*x^n)^(m + p))/x^(n*p), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] &&  !(IntegerQ[m] && NegQ[n])

Rule 514

Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
|  !IntegerQ[p])

Rule 375

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[((a + b/x^n)^p*(c +
 d/x^n)^q)/x^2, x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{e^{2 \coth ^{-1}(a x)}}{\left (c-\frac{c}{a x}\right )^{3/2}} \, dx &=-\int \frac{e^{2 \tanh ^{-1}(a x)}}{\left (c-\frac{c}{a x}\right )^{3/2}} \, dx\\ &=-\int \frac{1+a x}{\left (c-\frac{c}{a x}\right )^{3/2} (1-a x)} \, dx\\ &=\frac{c \int \frac{1+a x}{\left (c-\frac{c}{a x}\right )^{5/2} x} \, dx}{a}\\ &=\frac{c \int \frac{a+\frac{1}{x}}{\left (c-\frac{c}{a x}\right )^{5/2}} \, dx}{a}\\ &=-\frac{c \operatorname{Subst}\left (\int \frac{a+x}{x^2 \left (c-\frac{c x}{a}\right )^{5/2}} \, dx,x,\frac{1}{x}\right )}{a}\\ &=\frac{x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{(7 c) \operatorname{Subst}\left (\int \frac{1}{x \left (c-\frac{c x}{a}\right )^{5/2}} \, dx,x,\frac{1}{x}\right )}{2 a}\\ &=-\frac{7}{3 a \left (c-\frac{c}{a x}\right )^{3/2}}+\frac{x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{7 \operatorname{Subst}\left (\int \frac{1}{x \left (c-\frac{c x}{a}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{2 a}\\ &=-\frac{7}{3 a \left (c-\frac{c}{a x}\right )^{3/2}}-\frac{7}{a c \sqrt{c-\frac{c}{a x}}}+\frac{x}{\left (c-\frac{c}{a x}\right )^{3/2}}-\frac{7 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c-\frac{c x}{a}}} \, dx,x,\frac{1}{x}\right )}{2 a c}\\ &=-\frac{7}{3 a \left (c-\frac{c}{a x}\right )^{3/2}}-\frac{7}{a c \sqrt{c-\frac{c}{a x}}}+\frac{x}{\left (c-\frac{c}{a x}\right )^{3/2}}+\frac{7 \operatorname{Subst}\left (\int \frac{1}{a-\frac{a x^2}{c}} \, dx,x,\sqrt{c-\frac{c}{a x}}\right )}{c^2}\\ &=-\frac{7}{3 a \left (c-\frac{c}{a x}\right )^{3/2}}-\frac{7}{a c \sqrt{c-\frac{c}{a x}}}+\frac{x}{\left (c-\frac{c}{a x}\right )^{3/2}}+\frac{7 \tanh ^{-1}\left (\frac{\sqrt{c-\frac{c}{a x}}}{\sqrt{c}}\right )}{a c^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.0320579, size = 55, normalized size = 0.58 \[ \frac{x \left (3 a x-7 \text{Hypergeometric2F1}\left (-\frac{3}{2},1,-\frac{1}{2},1-\frac{1}{a x}\right )\right )}{3 c (a x-1) \sqrt{c-\frac{c}{a x}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(2*ArcCoth[a*x])/(c - c/(a*x))^(3/2),x]

[Out]

(x*(3*a*x - 7*Hypergeometric2F1[-3/2, 1, -1/2, 1 - 1/(a*x)]))/(3*c*Sqrt[c - c/(a*x)]*(-1 + a*x))

________________________________________________________________________________________

Maple [B]  time = 0.171, size = 260, normalized size = 2.7 \begin{align*} -{\frac{x}{6\,{c}^{2} \left ( ax-1 \right ) ^{3}}\sqrt{{\frac{c \left ( ax-1 \right ) }{ax}}} \left ( -42\,\sqrt{ \left ( ax-1 \right ) x}{a}^{7/2}{x}^{3}+36\, \left ( \left ( ax-1 \right ) x \right ) ^{3/2}{a}^{5/2}x-21\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ){x}^{3}{a}^{3}+126\,{a}^{5/2}\sqrt{ \left ( ax-1 \right ) x}{x}^{2}-28\,{a}^{3/2} \left ( \left ( ax-1 \right ) x \right ) ^{3/2}+63\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ){x}^{2}{a}^{2}-126\,{a}^{3/2}\sqrt{ \left ( ax-1 \right ) x}x-63\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ) xa+42\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+21\,\ln \left ( 1/2\,{\frac{2\,\sqrt{ \left ( ax-1 \right ) x}\sqrt{a}+2\,ax-1}{\sqrt{a}}} \right ) \right ){\frac{1}{\sqrt{ \left ( ax-1 \right ) x}}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x+1)/(a*x-1)/(c-c/a/x)^(3/2),x)

[Out]

-1/6*(c*(a*x-1)/a/x)^(1/2)*x*(-42*((a*x-1)*x)^(1/2)*a^(7/2)*x^3+36*((a*x-1)*x)^(3/2)*a^(5/2)*x-21*ln(1/2*(2*((
a*x-1)*x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*x^3*a^3+126*a^(5/2)*((a*x-1)*x)^(1/2)*x^2-28*a^(3/2)*((a*x-1)*x)^(3/
2)+63*ln(1/2*(2*((a*x-1)*x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*x^2*a^2-126*a^(3/2)*((a*x-1)*x)^(1/2)*x-63*ln(1/2*
(2*((a*x-1)*x)^(1/2)*a^(1/2)+2*a*x-1)/a^(1/2))*x*a+42*((a*x-1)*x)^(1/2)*a^(1/2)+21*ln(1/2*(2*((a*x-1)*x)^(1/2)
*a^(1/2)+2*a*x-1)/a^(1/2)))/((a*x-1)*x)^(1/2)/c^2/(a*x-1)^3/a^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a x + 1}{{\left (a x - 1\right )}{\left (c - \frac{c}{a x}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*x + 1)/((a*x - 1)*(c - c/(a*x))^(3/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.77956, size = 514, normalized size = 5.41 \begin{align*} \left [\frac{21 \,{\left (a^{2} x^{2} - 2 \, a x + 1\right )} \sqrt{c} \log \left (-2 \, a c x - 2 \, a \sqrt{c} x \sqrt{\frac{a c x - c}{a x}} + c\right ) + 2 \,{\left (3 \, a^{3} x^{3} - 28 \, a^{2} x^{2} + 21 \, a x\right )} \sqrt{\frac{a c x - c}{a x}}}{6 \,{\left (a^{3} c^{2} x^{2} - 2 \, a^{2} c^{2} x + a c^{2}\right )}}, -\frac{21 \,{\left (a^{2} x^{2} - 2 \, a x + 1\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{-c} \sqrt{\frac{a c x - c}{a x}}}{c}\right ) -{\left (3 \, a^{3} x^{3} - 28 \, a^{2} x^{2} + 21 \, a x\right )} \sqrt{\frac{a c x - c}{a x}}}{3 \,{\left (a^{3} c^{2} x^{2} - 2 \, a^{2} c^{2} x + a c^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)^(3/2),x, algorithm="fricas")

[Out]

[1/6*(21*(a^2*x^2 - 2*a*x + 1)*sqrt(c)*log(-2*a*c*x - 2*a*sqrt(c)*x*sqrt((a*c*x - c)/(a*x)) + c) + 2*(3*a^3*x^
3 - 28*a^2*x^2 + 21*a*x)*sqrt((a*c*x - c)/(a*x)))/(a^3*c^2*x^2 - 2*a^2*c^2*x + a*c^2), -1/3*(21*(a^2*x^2 - 2*a
*x + 1)*sqrt(-c)*arctan(sqrt(-c)*sqrt((a*c*x - c)/(a*x))/c) - (3*a^3*x^3 - 28*a^2*x^2 + 21*a*x)*sqrt((a*c*x -
c)/(a*x)))/(a^3*c^2*x^2 - 2*a^2*c^2*x + a*c^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a x + 1}{\left (- c \left (-1 + \frac{1}{a x}\right )\right )^{\frac{3}{2}} \left (a x - 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)**(3/2),x)

[Out]

Integral((a*x + 1)/((-c*(-1 + 1/(a*x)))**(3/2)*(a*x - 1)), x)

________________________________________________________________________________________

Giac [A]  time = 1.31482, size = 193, normalized size = 2.03 \begin{align*} -\frac{1}{3} \, a c{\left (\frac{2 \,{\left (2 \, c + \frac{9 \,{\left (a c x - c\right )}}{a x}\right )} x}{{\left (a c x - c\right )} a c^{2} \sqrt{\frac{a c x - c}{a x}}} + \frac{21 \, \arctan \left (\frac{\sqrt{\frac{a c x - c}{a x}}}{\sqrt{-c}}\right )}{a^{2} \sqrt{-c} c^{2}} - \frac{3 \, \sqrt{\frac{a c x - c}{a x}}}{a^{2}{\left (c - \frac{a c x - c}{a x}\right )} c^{2}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*x-1)*(a*x+1)/(c-c/a/x)^(3/2),x, algorithm="giac")

[Out]

-1/3*a*c*(2*(2*c + 9*(a*c*x - c)/(a*x))*x/((a*c*x - c)*a*c^2*sqrt((a*c*x - c)/(a*x))) + 21*arctan(sqrt((a*c*x
- c)/(a*x))/sqrt(-c))/(a^2*sqrt(-c)*c^2) - 3*sqrt((a*c*x - c)/(a*x))/(a^2*(c - (a*c*x - c)/(a*x))*c^2))