### 3.342 $$\int e^{-2 \coth ^{-1}(a x)} x^2 \sqrt{c-a c x} \, dx$$

Optimal. Leaf size=97 $-\frac{2 (c-a c x)^{7/2}}{7 a^3 c^3}-\frac{2 (c-a c x)^{3/2}}{3 a^3 c}-\frac{4 \sqrt{c-a c x}}{a^3}+\frac{4 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-a c x}}{\sqrt{2} \sqrt{c}}\right )}{a^3}$

[Out]

(-4*Sqrt[c - a*c*x])/a^3 - (2*(c - a*c*x)^(3/2))/(3*a^3*c) - (2*(c - a*c*x)^(7/2))/(7*a^3*c^3) + (4*Sqrt[2]*Sq
rt[c]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2]*Sqrt[c])])/a^3

________________________________________________________________________________________

Rubi [A]  time = 0.248465, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 7, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.304, Rules used = {6167, 6130, 21, 88, 50, 63, 206} $-\frac{2 (c-a c x)^{7/2}}{7 a^3 c^3}-\frac{2 (c-a c x)^{3/2}}{3 a^3 c}-\frac{4 \sqrt{c-a c x}}{a^3}+\frac{4 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-a c x}}{\sqrt{2} \sqrt{c}}\right )}{a^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^2*Sqrt[c - a*c*x])/E^(2*ArcCoth[a*x]),x]

[Out]

(-4*Sqrt[c - a*c*x])/a^3 - (2*(c - a*c*x)^(3/2))/(3*a^3*c) - (2*(c - a*c*x)^(7/2))/(7*a^3*c^3) + (4*Sqrt[2]*Sq
rt[c]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2]*Sqrt[c])])/a^3

Rule 6167

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rule 6130

Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[(u*(c + d*x)^p*(1 + a*x)^(
n/2))/(1 - a*x)^(n/2), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !(IntegerQ[p] || GtQ[c, 0]
)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
d*x, a + b*x])

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int e^{-2 \coth ^{-1}(a x)} x^2 \sqrt{c-a c x} \, dx &=-\int e^{-2 \tanh ^{-1}(a x)} x^2 \sqrt{c-a c x} \, dx\\ &=-\int \frac{x^2 (1-a x) \sqrt{c-a c x}}{1+a x} \, dx\\ &=-\frac{\int \frac{x^2 (c-a c x)^{3/2}}{1+a x} \, dx}{c}\\ &=-\frac{\int \left (\frac{(c-a c x)^{3/2}}{a^2 (1+a x)}-\frac{(c-a c x)^{5/2}}{a^2 c}\right ) \, dx}{c}\\ &=-\frac{2 (c-a c x)^{7/2}}{7 a^3 c^3}-\frac{\int \frac{(c-a c x)^{3/2}}{1+a x} \, dx}{a^2 c}\\ &=-\frac{2 (c-a c x)^{3/2}}{3 a^3 c}-\frac{2 (c-a c x)^{7/2}}{7 a^3 c^3}-\frac{2 \int \frac{\sqrt{c-a c x}}{1+a x} \, dx}{a^2}\\ &=-\frac{4 \sqrt{c-a c x}}{a^3}-\frac{2 (c-a c x)^{3/2}}{3 a^3 c}-\frac{2 (c-a c x)^{7/2}}{7 a^3 c^3}-\frac{(4 c) \int \frac{1}{(1+a x) \sqrt{c-a c x}} \, dx}{a^2}\\ &=-\frac{4 \sqrt{c-a c x}}{a^3}-\frac{2 (c-a c x)^{3/2}}{3 a^3 c}-\frac{2 (c-a c x)^{7/2}}{7 a^3 c^3}+\frac{8 \operatorname{Subst}\left (\int \frac{1}{2-\frac{x^2}{c}} \, dx,x,\sqrt{c-a c x}\right )}{a^3}\\ &=-\frac{4 \sqrt{c-a c x}}{a^3}-\frac{2 (c-a c x)^{3/2}}{3 a^3 c}-\frac{2 (c-a c x)^{7/2}}{7 a^3 c^3}+\frac{4 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-a c x}}{\sqrt{2} \sqrt{c}}\right )}{a^3}\\ \end{align*}

Mathematica [A]  time = 0.0899396, size = 78, normalized size = 0.8 $\frac{2 \left (3 a^3 x^3-9 a^2 x^2+16 a x-52\right ) \sqrt{c-a c x}+84 \sqrt{2} \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c-a c x}}{\sqrt{2} \sqrt{c}}\right )}{21 a^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^2*Sqrt[c - a*c*x])/E^(2*ArcCoth[a*x]),x]

[Out]

(2*Sqrt[c - a*c*x]*(-52 + 16*a*x - 9*a^2*x^2 + 3*a^3*x^3) + 84*Sqrt[2]*Sqrt[c]*ArcTanh[Sqrt[c - a*c*x]/(Sqrt[2
]*Sqrt[c])])/(21*a^3)

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 75, normalized size = 0.8 \begin{align*} -2\,{\frac{1}{{c}^{3}{a}^{3}} \left ( 1/7\, \left ( -acx+c \right ) ^{7/2}+1/3\, \left ( -acx+c \right ) ^{3/2}{c}^{2}+2\,\sqrt{-acx+c}{c}^{3}-2\,{c}^{7/2}\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{-acx+c}\sqrt{2}}{\sqrt{c}}} \right ) \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-a*c*x+c)^(1/2)/(a*x+1)*(a*x-1),x)

[Out]

-2/c^3/a^3*(1/7*(-a*c*x+c)^(7/2)+1/3*(-a*c*x+c)^(3/2)*c^2+2*(-a*c*x+c)^(1/2)*c^3-2*c^(7/2)*2^(1/2)*arctanh(1/2
*(-a*c*x+c)^(1/2)*2^(1/2)/c^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.7128, size = 400, normalized size = 4.12 \begin{align*} \left [\frac{2 \,{\left (21 \, \sqrt{2} \sqrt{c} \log \left (\frac{a c x - 2 \, \sqrt{2} \sqrt{-a c x + c} \sqrt{c} - 3 \, c}{a x + 1}\right ) +{\left (3 \, a^{3} x^{3} - 9 \, a^{2} x^{2} + 16 \, a x - 52\right )} \sqrt{-a c x + c}\right )}}{21 \, a^{3}}, -\frac{2 \,{\left (42 \, \sqrt{2} \sqrt{-c} \arctan \left (\frac{\sqrt{2} \sqrt{-a c x + c} \sqrt{-c}}{2 \, c}\right ) -{\left (3 \, a^{3} x^{3} - 9 \, a^{2} x^{2} + 16 \, a x - 52\right )} \sqrt{-a c x + c}\right )}}{21 \, a^{3}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1),x, algorithm="fricas")

[Out]

[2/21*(21*sqrt(2)*sqrt(c)*log((a*c*x - 2*sqrt(2)*sqrt(-a*c*x + c)*sqrt(c) - 3*c)/(a*x + 1)) + (3*a^3*x^3 - 9*a
^2*x^2 + 16*a*x - 52)*sqrt(-a*c*x + c))/a^3, -2/21*(42*sqrt(2)*sqrt(-c)*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)*sq
rt(-c)/c) - (3*a^3*x^3 - 9*a^2*x^2 + 16*a*x - 52)*sqrt(-a*c*x + c))/a^3]

________________________________________________________________________________________

Sympy [A]  time = 5.76929, size = 95, normalized size = 0.98 \begin{align*} - \frac{2 \left (\frac{2 \sqrt{2} c^{4} \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{- a c x + c}}{2 \sqrt{- c}} \right )}}{\sqrt{- c}} + 2 c^{3} \sqrt{- a c x + c} + \frac{c^{2} \left (- a c x + c\right )^{\frac{3}{2}}}{3} + \frac{\left (- a c x + c\right )^{\frac{7}{2}}}{7}\right )}{a^{3} c^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-a*c*x+c)**(1/2)*(a*x-1)/(a*x+1),x)

[Out]

-2*(2*sqrt(2)*c**4*atan(sqrt(2)*sqrt(-a*c*x + c)/(2*sqrt(-c)))/sqrt(-c) + 2*c**3*sqrt(-a*c*x + c) + c**2*(-a*c
*x + c)**(3/2)/3 + (-a*c*x + c)**(7/2)/7)/(a**3*c**3)

________________________________________________________________________________________

Giac [A]  time = 1.14079, size = 142, normalized size = 1.46 \begin{align*} -\frac{4 \, \sqrt{2} c \arctan \left (\frac{\sqrt{2} \sqrt{-a c x + c}}{2 \, \sqrt{-c}}\right )}{a^{3} \sqrt{-c}} + \frac{2 \,{\left (3 \,{\left (a c x - c\right )}^{3} \sqrt{-a c x + c} a^{18} c^{18} - 7 \,{\left (-a c x + c\right )}^{\frac{3}{2}} a^{18} c^{20} - 42 \, \sqrt{-a c x + c} a^{18} c^{21}\right )}}{21 \, a^{21} c^{21}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-a*c*x+c)^(1/2)*(a*x-1)/(a*x+1),x, algorithm="giac")

[Out]

-4*sqrt(2)*c*arctan(1/2*sqrt(2)*sqrt(-a*c*x + c)/sqrt(-c))/(a^3*sqrt(-c)) + 2/21*(3*(a*c*x - c)^3*sqrt(-a*c*x
+ c)*a^18*c^18 - 7*(-a*c*x + c)^(3/2)*a^18*c^20 - 42*sqrt(-a*c*x + c)*a^18*c^21)/(a^21*c^21)