3.340 \(\int \frac{e^{-\coth ^{-1}(a x)} \sqrt{c-a c x}}{x^2} \, dx\)

Optimal. Leaf size=96 \[ \frac{\sqrt{\frac{1}{a x}+1} \sqrt{c-a c x}}{x \sqrt{1-\frac{1}{a x}}}-\frac{3 \sqrt{a} \sqrt{\frac{1}{x}} \sqrt{c-a c x} \sinh ^{-1}\left (\frac{\sqrt{\frac{1}{x}}}{\sqrt{a}}\right )}{\sqrt{1-\frac{1}{a x}}} \]

[Out]

(Sqrt[1 + 1/(a*x)]*Sqrt[c - a*c*x])/(Sqrt[1 - 1/(a*x)]*x) - (3*Sqrt[a]*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcSinh[Sq
rt[x^(-1)]/Sqrt[a]])/Sqrt[1 - 1/(a*x)]

________________________________________________________________________________________

Rubi [A]  time = 0.203605, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {6176, 6181, 80, 54, 215} \[ \frac{\sqrt{\frac{1}{a x}+1} \sqrt{c-a c x}}{x \sqrt{1-\frac{1}{a x}}}-\frac{3 \sqrt{a} \sqrt{\frac{1}{x}} \sqrt{c-a c x} \sinh ^{-1}\left (\frac{\sqrt{\frac{1}{x}}}{\sqrt{a}}\right )}{\sqrt{1-\frac{1}{a x}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - a*c*x]/(E^ArcCoth[a*x]*x^2),x]

[Out]

(Sqrt[1 + 1/(a*x)]*Sqrt[c - a*c*x])/(Sqrt[1 - 1/(a*x)]*x) - (3*Sqrt[a]*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcSinh[Sq
rt[x^(-1)]/Sqrt[a]])/Sqrt[1 - 1/(a*x)]

Rule 6176

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6181

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> -Dist[c^p*x^m*(1/x)^m, Sub
st[Int[((1 + (d*x)/c)^p*(1 + x/a)^(n/2))/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n,
 p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{e^{-\coth ^{-1}(a x)} \sqrt{c-a c x}}{x^2} \, dx &=\frac{\sqrt{c-a c x} \int \frac{e^{-\coth ^{-1}(a x)} \sqrt{1-\frac{1}{a x}}}{x^{3/2}} \, dx}{\sqrt{1-\frac{1}{a x}} \sqrt{x}}\\ &=-\frac{\left (\sqrt{\frac{1}{x}} \sqrt{c-a c x}\right ) \operatorname{Subst}\left (\int \frac{1-\frac{x}{a}}{\sqrt{x} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{\sqrt{1-\frac{1}{a x}}}\\ &=\frac{\sqrt{1+\frac{1}{a x}} \sqrt{c-a c x}}{\sqrt{1-\frac{1}{a x}} x}-\frac{\left (3 \sqrt{\frac{1}{x}} \sqrt{c-a c x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{2 \sqrt{1-\frac{1}{a x}}}\\ &=\frac{\sqrt{1+\frac{1}{a x}} \sqrt{c-a c x}}{\sqrt{1-\frac{1}{a x}} x}-\frac{\left (3 \sqrt{\frac{1}{x}} \sqrt{c-a c x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,\sqrt{\frac{1}{x}}\right )}{\sqrt{1-\frac{1}{a x}}}\\ &=\frac{\sqrt{1+\frac{1}{a x}} \sqrt{c-a c x}}{\sqrt{1-\frac{1}{a x}} x}-\frac{3 \sqrt{a} \sqrt{\frac{1}{x}} \sqrt{c-a c x} \sinh ^{-1}\left (\frac{\sqrt{\frac{1}{x}}}{\sqrt{a}}\right )}{\sqrt{1-\frac{1}{a x}}}\\ \end{align*}

Mathematica [A]  time = 0.0391965, size = 78, normalized size = 0.81 \[ -\frac{\sqrt{\frac{1}{x}} \sqrt{c-a c x} \left (3 \sqrt{a} \sinh ^{-1}\left (\frac{\sqrt{\frac{1}{x}}}{\sqrt{a}}\right )-\sqrt{\frac{1}{x}} \sqrt{\frac{1}{a x}+1}\right )}{\sqrt{1-\frac{1}{a x}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - a*c*x]/(E^ArcCoth[a*x]*x^2),x]

[Out]

-((Sqrt[x^(-1)]*Sqrt[c - a*c*x]*(-(Sqrt[1 + 1/(a*x)]*Sqrt[x^(-1)]) + 3*Sqrt[a]*ArcSinh[Sqrt[x^(-1)]/Sqrt[a]]))
/Sqrt[1 - 1/(a*x)])

________________________________________________________________________________________

Maple [A]  time = 0.142, size = 90, normalized size = 0.9 \begin{align*}{\frac{ax+1}{ \left ( ax-1 \right ) x}\sqrt{{\frac{ax-1}{ax+1}}}\sqrt{-c \left ( ax-1 \right ) } \left ( -3\,\arctan \left ({\frac{\sqrt{-c \left ( ax+1 \right ) }}{\sqrt{c}}} \right ) xac+\sqrt{-c \left ( ax+1 \right ) }\sqrt{c} \right ){\frac{1}{\sqrt{-c \left ( ax+1 \right ) }}}{\frac{1}{\sqrt{c}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x)

[Out]

((a*x-1)/(a*x+1))^(1/2)*(a*x+1)*(-c*(a*x-1))^(1/2)*(-3*arctan((-c*(a*x+1))^(1/2)/c^(1/2))*x*a*c+(-c*(a*x+1))^(
1/2)*c^(1/2))/(a*x-1)/(-c*(a*x+1))^(1/2)/x/c^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-a c x + c} \sqrt{\frac{a x - 1}{a x + 1}}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(-a*c*x + c)*sqrt((a*x - 1)/(a*x + 1))/x^2, x)

________________________________________________________________________________________

Fricas [A]  time = 1.65831, size = 520, normalized size = 5.42 \begin{align*} \left [\frac{3 \,{\left (a^{2} x^{2} - a x\right )} \sqrt{-c} \log \left (-\frac{a^{2} c x^{2} + a c x + 2 \, \sqrt{-a c x + c}{\left (a x + 1\right )} \sqrt{-c} \sqrt{\frac{a x - 1}{a x + 1}} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt{-a c x + c}{\left (a x + 1\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{2 \,{\left (a x^{2} - x\right )}}, -\frac{3 \,{\left (a^{2} x^{2} - a x\right )} \sqrt{c} \arctan \left (\frac{\sqrt{-a c x + c} \sqrt{c} \sqrt{\frac{a x - 1}{a x + 1}}}{a c x - c}\right ) - \sqrt{-a c x + c}{\left (a x + 1\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{a x^{2} - x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*(a^2*x^2 - a*x)*sqrt(-c)*log(-(a^2*c*x^2 + a*c*x + 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1
)/(a*x + 1)) - 2*c)/(a*x^2 - x)) + 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x^2 - x), -(3*(a
^2*x^2 - a*x)*sqrt(c)*arctan(sqrt(-a*c*x + c)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))/(a*c*x - c)) - sqrt(-a*c*x + c
)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x^2 - x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)**(1/2)*((a*x-1)/(a*x+1))**(1/2)/x**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.16243, size = 136, normalized size = 1.42 \begin{align*} \frac{{\left (a c^{2}{\left (\frac{3 \, \arctan \left (\frac{\sqrt{-a c x - c}}{\sqrt{c}}\right )}{\sqrt{c}} - \frac{\sqrt{-a c x - c}}{a c x}\right )} - \frac{3 \, a c^{2} \arctan \left (\frac{\sqrt{2} \sqrt{-c}}{\sqrt{c}}\right ) - \sqrt{2} a \sqrt{-c} c^{\frac{3}{2}}}{\sqrt{c}}\right )}{\left | c \right |} \mathrm{sgn}\left (a x + 1\right )}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a*c*x+c)^(1/2)*((a*x-1)/(a*x+1))^(1/2)/x^2,x, algorithm="giac")

[Out]

(a*c^2*(3*arctan(sqrt(-a*c*x - c)/sqrt(c))/sqrt(c) - sqrt(-a*c*x - c)/(a*c*x)) - (3*a*c^2*arctan(sqrt(2)*sqrt(
-c)/sqrt(c)) - sqrt(2)*a*sqrt(-c)*c^(3/2))/sqrt(c))*abs(c)*sgn(a*x + 1)/c^2