3.224 \(\int \frac{e^{-3 \coth ^{-1}(a x)}}{(c-a c x)^5} \, dx\)

Optimal. Leaf size=94 \[ \frac{\left (a+\frac{1}{x}\right )^2}{5 a^3 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}-\frac{4 \left (a+\frac{1}{x}\right )}{5 a^2 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}+\frac{5 a+\frac{2}{x}}{5 a^2 c^5 \sqrt{1-\frac{1}{a^2 x^2}}} \]

[Out]

(-4*(a + x^(-1)))/(5*a^2*c^5*(1 - 1/(a^2*x^2))^(3/2)) + (a + x^(-1))^2/(5*a^3*c^5*(1 - 1/(a^2*x^2))^(5/2)) + (
5*a + 2/x)/(5*a^2*c^5*Sqrt[1 - 1/(a^2*x^2)])

________________________________________________________________________________________

Rubi [A]  time = 0.312766, antiderivative size = 94, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.278, Rules used = {6175, 6178, 852, 1635, 637} \[ \frac{\left (a+\frac{1}{x}\right )^2}{5 a^3 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}-\frac{4 \left (a+\frac{1}{x}\right )}{5 a^2 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}+\frac{5 a+\frac{2}{x}}{5 a^2 c^5 \sqrt{1-\frac{1}{a^2 x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(E^(3*ArcCoth[a*x])*(c - a*c*x)^5),x]

[Out]

(-4*(a + x^(-1)))/(5*a^2*c^5*(1 - 1/(a^2*x^2))^(3/2)) + (a + x^(-1))^2/(5*a^3*c^5*(1 - 1/(a^2*x^2))^(5/2)) + (
5*a + 2/x)/(5*a^2*c^5*Sqrt[1 - 1/(a^2*x^2)])

Rule 6175

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[n/2] && Inte
gerQ[p]

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1635

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq,
a*e + c*d*x, x], f = PolynomialRemainder[Pq, a*e + c*d*x, x]}, -Simp[(d*f*(d + e*x)^m*(a + c*x^2)^(p + 1))/(2*
a*e*(p + 1)), x] + Dist[d/(2*a*(p + 1)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)*Q
 + f*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[p +
 1/2, 0] && GtQ[m, 0]

Rule 637

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(a*e) + c*d*x)/(a*c*Sqrt[a + c*x^2]),
 x] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{e^{-3 \coth ^{-1}(a x)}}{(c-a c x)^5} \, dx &=-\frac{\int \frac{e^{-3 \coth ^{-1}(a x)}}{\left (1-\frac{1}{a x}\right )^5 x^5} \, dx}{a^5 c^5}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^3}{\left (1-\frac{x}{a}\right )^2 \left (1-\frac{x^2}{a^2}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{a^5 c^5}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^3 \left (1+\frac{x}{a}\right )^2}{\left (1-\frac{x^2}{a^2}\right )^{7/2}} \, dx,x,\frac{1}{x}\right )}{a^5 c^5}\\ &=\frac{\left (a+\frac{1}{x}\right )^2}{5 a^3 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}-\frac{\operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right ) \left (2 a^3+5 a^2 x+5 a x^2\right )}{\left (1-\frac{x^2}{a^2}\right )^{5/2}} \, dx,x,\frac{1}{x}\right )}{5 a^5 c^5}\\ &=-\frac{4 \left (a+\frac{1}{x}\right )}{5 a^2 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}+\frac{\left (a+\frac{1}{x}\right )^2}{5 a^3 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}+\frac{\operatorname{Subst}\left (\int \frac{6 a^3+15 a^2 x}{\left (1-\frac{x^2}{a^2}\right )^{3/2}} \, dx,x,\frac{1}{x}\right )}{15 a^5 c^5}\\ &=-\frac{4 \left (a+\frac{1}{x}\right )}{5 a^2 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}}+\frac{\left (a+\frac{1}{x}\right )^2}{5 a^3 c^5 \left (1-\frac{1}{a^2 x^2}\right )^{5/2}}+\frac{5 a+\frac{2}{x}}{5 a^2 c^5 \sqrt{1-\frac{1}{a^2 x^2}}}\\ \end{align*}

Mathematica [A]  time = 0.0632543, size = 57, normalized size = 0.61 \[ \frac{x \sqrt{1-\frac{1}{a^2 x^2}} \left (2 a^3 x^3-4 a^2 x^2+a x+2\right )}{5 c^5 (a x-1)^3 (a x+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(E^(3*ArcCoth[a*x])*(c - a*c*x)^5),x]

[Out]

(Sqrt[1 - 1/(a^2*x^2)]*x*(2 + a*x - 4*a^2*x^2 + 2*a^3*x^3))/(5*c^5*(-1 + a*x)^3*(1 + a*x))

________________________________________________________________________________________

Maple [A]  time = 0.05, size = 57, normalized size = 0.6 \begin{align*}{\frac{ \left ( 2\,{x}^{3}{a}^{3}-4\,{a}^{2}{x}^{2}+ax+2 \right ) \left ( ax+1 \right ) }{5\, \left ( ax-1 \right ) ^{4}{c}^{5}a} \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^5,x)

[Out]

1/5*((a*x-1)/(a*x+1))^(3/2)*(2*a^3*x^3-4*a^2*x^2+a*x+2)*(a*x+1)/(a*x-1)^4/c^5/a

________________________________________________________________________________________

Maxima [A]  time = 1.03963, size = 111, normalized size = 1.18 \begin{align*} \frac{1}{40} \, a{\left (\frac{5 \, \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2} c^{5}} - \frac{\frac{5 \,{\left (a x - 1\right )}}{a x + 1} - \frac{15 \,{\left (a x - 1\right )}^{2}}{{\left (a x + 1\right )}^{2}} - 1}{a^{2} c^{5} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{2}}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^5,x, algorithm="maxima")

[Out]

1/40*a*(5*sqrt((a*x - 1)/(a*x + 1))/(a^2*c^5) - (5*(a*x - 1)/(a*x + 1) - 15*(a*x - 1)^2/(a*x + 1)^2 - 1)/(a^2*
c^5*((a*x - 1)/(a*x + 1))^(5/2)))

________________________________________________________________________________________

Fricas [A]  time = 1.58291, size = 158, normalized size = 1.68 \begin{align*} \frac{{\left (2 \, a^{3} x^{3} - 4 \, a^{2} x^{2} + a x + 2\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{5 \,{\left (a^{4} c^{5} x^{3} - 3 \, a^{3} c^{5} x^{2} + 3 \, a^{2} c^{5} x - a c^{5}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^5,x, algorithm="fricas")

[Out]

1/5*(2*a^3*x^3 - 4*a^2*x^2 + a*x + 2)*sqrt((a*x - 1)/(a*x + 1))/(a^4*c^5*x^3 - 3*a^3*c^5*x^2 + 3*a^2*c^5*x - a
*c^5)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))**(3/2)/(-a*c*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{\left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}{{\left (a c x - c\right )}^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((a*x-1)/(a*x+1))^(3/2)/(-a*c*x+c)^5,x, algorithm="giac")

[Out]

integrate(-((a*x - 1)/(a*x + 1))^(3/2)/(a*c*x - c)^5, x)