3.20 \(\int e^{3 \coth ^{-1}(a x)} \, dx\)

Optimal. Leaf size=62 \[ x \sqrt{1-\frac{1}{a^2 x^2}}-\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a-\frac{1}{x}}+\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{a} \]

[Out]

(-4*Sqrt[1 - 1/(a^2*x^2)])/(a - x^(-1)) + Sqrt[1 - 1/(a^2*x^2)]*x + (3*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/a

________________________________________________________________________________________

Rubi [A]  time = 0.810646, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 8, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.875, Rules used = {6168, 6742, 651, 264, 266, 63, 208} \[ x \sqrt{1-\frac{1}{a^2 x^2}}-\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a-\frac{1}{x}}+\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{a} \]

Antiderivative was successfully verified.

[In]

Int[E^(3*ArcCoth[a*x]),x]

[Out]

(-4*Sqrt[1 - 1/(a^2*x^2)])/(a - x^(-1)) + Sqrt[1 - 1/(a^2*x^2)]*x + (3*ArcTanh[Sqrt[1 - 1/(a^2*x^2)]])/a

Rule 6168

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.)), x_Symbol] :> -Subst[Int[(1 + x/a)^((n + 1)/2)/(x^2*(1 - x/a)^((n - 1)/2)*Sq
rt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 651

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^m*(a + c*x^2)^(p + 1))
/(2*c*d*(p + 1)), x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p
+ 2, 0]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{3 \coth ^{-1}(a x)} \, dx &=-\operatorname{Subst}\left (\int \frac{\left (1+\frac{x}{a}\right )^2}{x^2 \left (1-\frac{x}{a}\right ) \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )\\ &=-\operatorname{Subst}\left (\int \left (\frac{4}{a (a-x) \sqrt{1-\frac{x^2}{a^2}}}+\frac{1}{x^2 \sqrt{1-\frac{x^2}{a^2}}}+\frac{3}{a x \sqrt{1-\frac{x^2}{a^2}}}\right ) \, dx,x,\frac{1}{x}\right )\\ &=-\frac{3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{a}-\frac{4 \operatorname{Subst}\left (\int \frac{1}{(a-x) \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )}{a}-\operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{1-\frac{x^2}{a^2}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a-\frac{1}{x}}+\sqrt{1-\frac{1}{a^2 x^2}} x-\frac{3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a^2}}} \, dx,x,\frac{1}{x^2}\right )}{2 a}\\ &=-\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a-\frac{1}{x}}+\sqrt{1-\frac{1}{a^2 x^2}} x+(3 a) \operatorname{Subst}\left (\int \frac{1}{a^2-a^2 x^2} \, dx,x,\sqrt{1-\frac{1}{a^2 x^2}}\right )\\ &=-\frac{4 \sqrt{1-\frac{1}{a^2 x^2}}}{a-\frac{1}{x}}+\sqrt{1-\frac{1}{a^2 x^2}} x+\frac{3 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{a}\\ \end{align*}

Mathematica [A]  time = 0.0471783, size = 54, normalized size = 0.87 \[ \frac{x \sqrt{1-\frac{1}{a^2 x^2}} (a x-5)}{a x-1}+\frac{3 \log \left (a x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )}{a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(3*ArcCoth[a*x]),x]

[Out]

(Sqrt[1 - 1/(a^2*x^2)]*x*(-5 + a*x))/(-1 + a*x) + (3*Log[a*(1 + Sqrt[1 - 1/(a^2*x^2)])*x])/a

________________________________________________________________________________________

Maple [B]  time = 0.136, size = 247, normalized size = 4. \begin{align*}{\frac{1}{a \left ( ax+1 \right ) } \left ( 3\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}{\sqrt{{a}^{2}}}} \right ){x}^{2}{a}^{3}+3\,\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }{x}^{2}{a}^{2}-6\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}{\sqrt{{a}^{2}}}} \right ) x{a}^{2}-2\, \left ( \left ( ax-1 \right ) \left ( ax+1 \right ) \right ) ^{3/2}\sqrt{{a}^{2}}-6\,\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }xa+3\,a\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}{\sqrt{{a}^{2}}}} \right ) +3\,\sqrt{{a}^{2}}\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) } \right ){\frac{1}{\sqrt{{a}^{2}}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}} \left ({\frac{ax-1}{ax+1}} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(3/2),x)

[Out]

1/a*(3*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x^2*a^3+3*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/
2)*x^2*a^2-6*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2))*x*a^2-2*((a*x-1)*(a*x+1))^(3/2)*(a^2)
^(1/2)-6*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2)*x*a+3*a*ln((a^2*x+(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2
))+3*(a^2)^(1/2)*((a*x-1)*(a*x+1))^(1/2))/(a^2)^(1/2)/((a*x-1)*(a*x+1))^(1/2)/(a*x+1)/((a*x-1)/(a*x+1))^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 1.00855, size = 149, normalized size = 2.4 \begin{align*} -a{\left (\frac{2 \,{\left (\frac{3 \,{\left (a x - 1\right )}}{a x + 1} - 2\right )}}{a^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}} - a^{2} \sqrt{\frac{a x - 1}{a x + 1}}} - \frac{3 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} + \frac{3 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2),x, algorithm="maxima")

[Out]

-a*(2*(3*(a*x - 1)/(a*x + 1) - 2)/(a^2*((a*x - 1)/(a*x + 1))^(3/2) - a^2*sqrt((a*x - 1)/(a*x + 1))) - 3*log(sq
rt((a*x - 1)/(a*x + 1)) + 1)/a^2 + 3*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2)

________________________________________________________________________________________

Fricas [A]  time = 1.84083, size = 217, normalized size = 3.5 \begin{align*} \frac{3 \,{\left (a x - 1\right )} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 3 \,{\left (a x - 1\right )} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right ) +{\left (a^{2} x^{2} - 4 \, a x - 5\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{a^{2} x - a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2),x, algorithm="fricas")

[Out]

(3*(a*x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 3*(a*x - 1)*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (a^2*x^2 -
4*a*x - 5)*sqrt((a*x - 1)/(a*x + 1)))/(a^2*x - a)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2),x)

[Out]

Integral(((a*x - 1)/(a*x + 1))**(-3/2), x)

________________________________________________________________________________________

Giac [B]  time = 1.16671, size = 161, normalized size = 2.6 \begin{align*} a{\left (\frac{3 \, \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{3 \, \log \left ({\left | \sqrt{\frac{a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2}} - \frac{2 \,{\left (\frac{3 \,{\left (a x - 1\right )}}{a x + 1} - 2\right )}}{a^{2}{\left (\frac{{\left (a x - 1\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{a x + 1} - \sqrt{\frac{a x - 1}{a x + 1}}\right )}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2),x, algorithm="giac")

[Out]

a*(3*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 3*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^2 - 2*(3*(a*x - 1)/(
a*x + 1) - 2)/(a^2*((a*x - 1)*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1) - sqrt((a*x - 1)/(a*x + 1)))))