3.160 \(\int e^{\coth ^{-1}(a x)} (c-a c x)^2 \, dx\)

Optimal. Leaf size=78 \[ \frac{1}{3} a^2 c^2 x^3 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}-\frac{1}{2} a c^2 x^2 \sqrt{1-\frac{1}{a^2 x^2}}+\frac{c^2 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{2 a} \]

[Out]

-(a*c^2*Sqrt[1 - 1/(a^2*x^2)]*x^2)/2 + (a^2*c^2*(1 - 1/(a^2*x^2))^(3/2)*x^3)/3 + (c^2*ArcTanh[Sqrt[1 - 1/(a^2*
x^2)]])/(2*a)

________________________________________________________________________________________

Rubi [A]  time = 0.136212, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.438, Rules used = {6175, 6178, 807, 266, 47, 63, 208} \[ \frac{1}{3} a^2 c^2 x^3 \left (1-\frac{1}{a^2 x^2}\right )^{3/2}-\frac{1}{2} a c^2 x^2 \sqrt{1-\frac{1}{a^2 x^2}}+\frac{c^2 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcCoth[a*x]*(c - a*c*x)^2,x]

[Out]

-(a*c^2*Sqrt[1 - 1/(a^2*x^2)]*x^2)/2 + (a^2*c^2*(1 - 1/(a^2*x^2))^(3/2)*x^3)/3 + (c^2*ArcTanh[Sqrt[1 - 1/(a^2*
x^2)]])/(2*a)

Rule 6175

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Dist[d^p, Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 - d^2, 0] &&  !IntegerQ[n/2] && Inte
gerQ[p]

Rule 6178

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> -Dist[c^n, Subst[Int[((c
+ d*x)^(p - n)*(1 - x^2/a^2)^(n/2))/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &&
 IntegerQ[(n - 1)/2] && IntegerQ[m] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p, n/2 + 1] || LtQ[-5, m, -1]) && In
tegerQ[2*p]

Rule 807

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Simp[((e*f - d*g
)*(d + e*x)^(m + 1)*(a + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e^2
), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& EqQ[Simplify[m + 2*p + 3], 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int e^{\coth ^{-1}(a x)} (c-a c x)^2 \, dx &=\left (a^2 c^2\right ) \int e^{\coth ^{-1}(a x)} \left (1-\frac{1}{a x}\right )^2 x^2 \, dx\\ &=-\left (\left (a^2 c^2\right ) \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right ) \sqrt{1-\frac{x^2}{a^2}}}{x^4} \, dx,x,\frac{1}{x}\right )\right )\\ &=\frac{1}{3} a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2} x^3+\left (a c^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{x^2}{a^2}}}{x^3} \, dx,x,\frac{1}{x}\right )\\ &=\frac{1}{3} a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2} x^3+\frac{1}{2} \left (a c^2\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-\frac{x}{a^2}}}{x^2} \, dx,x,\frac{1}{x^2}\right )\\ &=-\frac{1}{2} a c^2 \sqrt{1-\frac{1}{a^2 x^2}} x^2+\frac{1}{3} a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2} x^3-\frac{c^2 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1-\frac{x}{a^2}}} \, dx,x,\frac{1}{x^2}\right )}{4 a}\\ &=-\frac{1}{2} a c^2 \sqrt{1-\frac{1}{a^2 x^2}} x^2+\frac{1}{3} a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2} x^3+\frac{1}{2} \left (a c^2\right ) \operatorname{Subst}\left (\int \frac{1}{a^2-a^2 x^2} \, dx,x,\sqrt{1-\frac{1}{a^2 x^2}}\right )\\ &=-\frac{1}{2} a c^2 \sqrt{1-\frac{1}{a^2 x^2}} x^2+\frac{1}{3} a^2 c^2 \left (1-\frac{1}{a^2 x^2}\right )^{3/2} x^3+\frac{c^2 \tanh ^{-1}\left (\sqrt{1-\frac{1}{a^2 x^2}}\right )}{2 a}\\ \end{align*}

Mathematica [A]  time = 0.0961057, size = 64, normalized size = 0.82 \[ \frac{c^2 \left (a x \sqrt{1-\frac{1}{a^2 x^2}} \left (2 a^2 x^2-3 a x-2\right )+3 \log \left (a x \left (\sqrt{1-\frac{1}{a^2 x^2}}+1\right )\right )\right )}{6 a} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^ArcCoth[a*x]*(c - a*c*x)^2,x]

[Out]

(c^2*(a*Sqrt[1 - 1/(a^2*x^2)]*x*(-2 - 3*a*x + 2*a^2*x^2) + 3*Log[a*(1 + Sqrt[1 - 1/(a^2*x^2)])*x]))/(6*a)

________________________________________________________________________________________

Maple [A]  time = 0.141, size = 121, normalized size = 1.6 \begin{align*} -{\frac{ \left ( ax-1 \right ){c}^{2}}{6\,a} \left ( 3\,\sqrt{{a}^{2}}\sqrt{{a}^{2}{x}^{2}-1}xa-2\, \left ( \left ( ax-1 \right ) \left ( ax+1 \right ) \right ) ^{3/2}\sqrt{{a}^{2}}-3\,\ln \left ({\frac{{a}^{2}x+\sqrt{{a}^{2}{x}^{2}-1}\sqrt{{a}^{2}}}{\sqrt{{a}^{2}}}} \right ) a \right ){\frac{1}{\sqrt{{\frac{ax-1}{ax+1}}}}}{\frac{1}{\sqrt{ \left ( ax-1 \right ) \left ( ax+1 \right ) }}}{\frac{1}{\sqrt{{a}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a*x-1)/(a*x+1))^(1/2)*(-a*c*x+c)^2,x)

[Out]

-1/6*(a*x-1)*c^2*(3*(a^2)^(1/2)*(a^2*x^2-1)^(1/2)*x*a-2*((a*x-1)*(a*x+1))^(3/2)*(a^2)^(1/2)-3*ln((a^2*x+(a^2*x
^2-1)^(1/2)*(a^2)^(1/2))/(a^2)^(1/2))*a)/((a*x-1)/(a*x+1))^(1/2)/((a*x-1)*(a*x+1))^(1/2)/a/(a^2)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.117, size = 244, normalized size = 3.13 \begin{align*} \frac{1}{6} \, a{\left (\frac{3 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{3 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right )}{a^{2}} - \frac{2 \,{\left (3 \, c^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{2}} + 8 \, c^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{3}{2}} - 3 \, c^{2} \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{\frac{3 \,{\left (a x - 1\right )} a^{2}}{a x + 1} - \frac{3 \,{\left (a x - 1\right )}^{2} a^{2}}{{\left (a x + 1\right )}^{2}} + \frac{{\left (a x - 1\right )}^{3} a^{2}}{{\left (a x + 1\right )}^{3}} - a^{2}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a*c*x+c)^2,x, algorithm="maxima")

[Out]

1/6*a*(3*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 3*c^2*log(sqrt((a*x - 1)/(a*x + 1)) - 1)/a^2 - 2*(3*c^2*
((a*x - 1)/(a*x + 1))^(5/2) + 8*c^2*((a*x - 1)/(a*x + 1))^(3/2) - 3*c^2*sqrt((a*x - 1)/(a*x + 1)))/(3*(a*x - 1
)*a^2/(a*x + 1) - 3*(a*x - 1)^2*a^2/(a*x + 1)^2 + (a*x - 1)^3*a^2/(a*x + 1)^3 - a^2))

________________________________________________________________________________________

Fricas [A]  time = 1.49306, size = 231, normalized size = 2.96 \begin{align*} \frac{3 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right ) - 3 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} - 1\right ) +{\left (2 \, a^{3} c^{2} x^{3} - a^{2} c^{2} x^{2} - 5 \, a c^{2} x - 2 \, c^{2}\right )} \sqrt{\frac{a x - 1}{a x + 1}}}{6 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a*c*x+c)^2,x, algorithm="fricas")

[Out]

1/6*(3*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1) - 3*c^2*log(sqrt((a*x - 1)/(a*x + 1)) - 1) + (2*a^3*c^2*x^3 - a^
2*c^2*x^2 - 5*a*c^2*x - 2*c^2)*sqrt((a*x - 1)/(a*x + 1)))/a

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} c^{2} \left (\int - \frac{2 a x}{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}\, dx + \int \frac{a^{2} x^{2}}{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}\, dx + \int \frac{1}{\sqrt{\frac{a x}{a x + 1} - \frac{1}{a x + 1}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))**(1/2)*(-a*c*x+c)**2,x)

[Out]

c**2*(Integral(-2*a*x/sqrt(a*x/(a*x + 1) - 1/(a*x + 1)), x) + Integral(a**2*x**2/sqrt(a*x/(a*x + 1) - 1/(a*x +
 1)), x) + Integral(1/sqrt(a*x/(a*x + 1) - 1/(a*x + 1)), x))

________________________________________________________________________________________

Giac [B]  time = 1.22836, size = 224, normalized size = 2.87 \begin{align*} \frac{1}{6} \, a{\left (\frac{3 \, c^{2} \log \left (\sqrt{\frac{a x - 1}{a x + 1}} + 1\right )}{a^{2}} - \frac{3 \, c^{2} \log \left ({\left | \sqrt{\frac{a x - 1}{a x + 1}} - 1 \right |}\right )}{a^{2}} - \frac{2 \,{\left (\frac{8 \,{\left (a x - 1\right )} c^{2} \sqrt{\frac{a x - 1}{a x + 1}}}{a x + 1} + \frac{3 \,{\left (a x - 1\right )}^{2} c^{2} \sqrt{\frac{a x - 1}{a x + 1}}}{{\left (a x + 1\right )}^{2}} - 3 \, c^{2} \sqrt{\frac{a x - 1}{a x + 1}}\right )}}{a^{2}{\left (\frac{a x - 1}{a x + 1} - 1\right )}^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((a*x-1)/(a*x+1))^(1/2)*(-a*c*x+c)^2,x, algorithm="giac")

[Out]

1/6*a*(3*c^2*log(sqrt((a*x - 1)/(a*x + 1)) + 1)/a^2 - 3*c^2*log(abs(sqrt((a*x - 1)/(a*x + 1)) - 1))/a^2 - 2*(8
*(a*x - 1)*c^2*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1) + 3*(a*x - 1)^2*c^2*sqrt((a*x - 1)/(a*x + 1))/(a*x + 1)^2 -
 3*c^2*sqrt((a*x - 1)/(a*x + 1)))/(a^2*((a*x - 1)/(a*x + 1) - 1)^3))